Free Access
Ann. For. Sci.
Volume 62, Number 6, September-October 2005
Page(s) 575 - 583
References of Ann. For. Sci. 62 575-583
  1. Albaugh T.J., Allen H.L., Dougherty P.M., Kress L.W., King J.S., Leaf area and above-and below ground growth responses of loblolly pine to nutrient and water additions, For. Sci. 44 (1998) 317-327.
  2. Ben Brahim M., Effets de la nutrition phosphatée sur la croissance et le bilan de carbone des jeunes plants de Pin maritime, Thèse, Université Henri Poincaré Nancy I, 1996.
  3. Ben Brahim M., Loustau D., Gaudillère J.P., Saur E., Effects of phosphate deficiency on photosynthesis and accumulation of starch and soluble sugars in 1-year-old seedlings of maritime pine (Pinus pinaster Aït.), Ann. Sci. For. 53 (1996) 801-810.
  4. Berbigier P., Bonnefond J.M., Measurement and modelling of radiation transmission within a stand of maritime pine (Pinus pinaster), Ann. Sci. For. 52 (1995) 23-42.
  5. Brooks A., Effects of phosphorus nutrition on ribulose-1,5-biphosphate carboxylase activation, photosynthetic quantum yield and amounts of some Calvin-cycle metabolites in spinach leaves, Aust. J. Plant Physiol. 13 (1986) 221-237.
  6. Campbell G.S., Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution, Agric. For. Meteorol. 36 (1986) 317-321 [CrossRef].
  7. Canham C.D., Berkowitz A.R., Kelly V.R., Lovett G.M., Ollinger S.V., Schnurr J., Biomass allocation and multiple resource limitation in tree seedlings, Can. J. For. Res. 26 (1996) 1521-1530.
  8. Cannell M.G.R., Sheppard L.J., Milne R., Light use efficiency and woody biomass production of poplar and willow, Forestry 61 (1988) 125-136.
  9. Chang S.X., Seedling sweetgum (Liquidambar styraciflua L.) half-sib family response to N and P fertilization: growth, leaf area, net photosynthesis and nutrient uptake, For. Ecol. Manage. 173 (2003) 281-291 [CrossRef].
  10. Chapin F.S.III, The mineral nutrition of wild plants, Annu. Rev. Ecol. Syst. 11 (1980) 233-260 [CrossRef].
  11. Chartier M., Bonchretien P., Allirand J.M., Gosse G., Utilisation des cellules au silicium amorphe pour la mesure du rayonnement photosynthétiquement actif (400-700 nm), Agronomie 9 (1989) 281-284.
  12. Chen H.Y.H., Klinka K., Survival, growth, and allometry of planted Larix occidentalis seedlings in relation to light availability, For. Ecol. Manage. 106 (1998) 169-179 [CrossRef].
  13. De Groot C.C., Van den Boogaard R., Marcelis L.F.M., Harbinson J., Lambers H., Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation, J. Exp. Bot. 54 (2003) 1957-1967 [CrossRef] [PubMed].
  14. De Groot C.C., Marcelis L.F.M., Van den Boogaard R., Lambers H., Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light, Plant Cell Environ. 24 (2001) 1309-1316 [CrossRef].
  15. Delzon S., Bosc A., Cantet L., Loustau D., Variation of the photosynthetic capacity across a chronosequence of maritime pine correlates with needle phosphorus concentration, Ann. For. Sci. 62 (2005) 537-543.
  16. Elliot K.J., White A.S., Effects of light, nitrogen, and phosphorus on red pine seedling: growth and nutrient use efficiency, Ann. For. Sci. 40 (1994) 47-58.
  17. Ericsson T., Ingestad T., Nutrition of birch seedlings at varied realtive phosphorus addition rates, Physiol. Plant. 72 (1988) 227-235.
  18. Fan Z., Moore J.A., Wenny D.L., Growth and nutrition of container-grown ponderosa pine seedlings with controlled-release fertiliser incorporated in the root plug, Ann. For. Sci. 61 (2004) 117-124 [EDP Sciences] [CrossRef].
  19. Forseth I.N., Norman J.M., Modelling of solar irradiance, leaf energy budget and canopy photosynthesis, in: Hall D.O., Scurlock J.M.O., Bolhàr-Nordenkampf H.R., Leegood R.C., Long S.P. (Eds.), Photosynthesis and production in a changing environment, a field and laboratory manual, Chapman and Hall, London, 1993, pp. 207-219.
  20. Fredeen A.L., Rao I.M., Terry N., Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max, Plant. Physiol. 89 (1989) 225-230.
  21. Gelpe J., Lefrou G., Essai de fertilisation minérale sur pin maritime à Mimizan (Landes), résultats après la 26e année, Rev. For. Fr. 38 (1986) 394-400.
  22. González-Ochoa A.I., de las Heras J., Torres P., Sánchez-Gómez E., Mycorrhization of Pinus halepensis Mill. and Pinus pinaster Aiton seedlings in two commercial nurseries, Ann. For. Sci. 60 (2003) 43-48 [EDP Sciences] [CrossRef].
  23. Grace J.C., Jarvis P.G., Norman J.M., Modelling the interception of solar radiant energy in intensively managed stands, N. Z. J. For. Sci. 17 (1987) 193-209.
  24. Ingestad T., Mineral nutrient requirements of Pinus silvestris and Picea abies seedlings, Physiol. Plant. 45 (1979) 373-380.
  25. Ingestad T., Relative addition rate and external concentration; driving variables used in plant nutrition research, Plant Cell Environ. (1982) 443-453.
  26. Ingestad T., Lund A.B., Theory and techniques for steady state mineral nutrition and growth of plants, Scand. J. For. Res. 1 (1986) 439-453.
  27. Ingestad T., Agren G.I., Theories and methods on plant nutrition and growth, Physiol. Plant. 84 (1992) 177-184 [CrossRef].
  28. Jacob J., Lawlor D.W., In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate-deficient sunflower and maize leaves, Plant Cell Environ. 16 (1993) 785-795.
  29. Jose S., Merritt S., Ramsey C.L., Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen, For. Ecol. Manage. 180 (2003) 335-344 [CrossRef].
  30. Kiniry J.R., Biomass accumulation and radiation use efficiency of honey mesquite and eastern red cedar, Biomass Bioenergy 15 (1998) 467-473 [CrossRef].
  31. Lascoux D.M., Paino E.N., De Gardo R.S., Kremer A., Dormling I., Maturation of maritime pine (Pinus pinaster Aït.) seedlings after exposure to a period of continuous light, Tree Physiol. 12 (1993) 363-378 [PubMed].
  32. Lauer M.J., Blevins D.G., Sierzputowska-Gracz H., 31P-Nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max L.) as affected by phosphate nutrition, Plant Physiol. 89 (1988) 1331-1336.
  33. Lewis J.D., Griffen K.L., Thomas R.B., Strain B.R., Phosphorus supply affects the photosynthetic capacity of loblolly pine grown in elevated carbon dioxide, Tree Physiol. 14 (1994) 1229-1244 [PubMed].
  34. Loustau D., Ben Brahim M., Gaudillère J.P., Dreyer E., Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings, Tree Physiol. 19 (1999) 707-715 [PubMed].
  35. Margolis H.A., Brand D.G., An ecophysiological basis for understanding plantation establishment, Can. J. For. Res. 20 (1990) 375-390.
  36. Marschner H., Mineral Nutrition of Higher Plants, Academic Press, 1995, London.
  37. Mengel K., Kirkby E.A., Principles of plant nutrition, International Potash Institute Worblaufen, Bern, 1987.
  38. Minotta G., Pinzauti S., Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings, For. Ecol. Manage. 86 (1996) 61-71 [CrossRef].
  39. Mooney H.A., Gulman S.L., Constraints on leaf structure and function in reference to herbivory, BioScience 32 (1982) 198-206.
  40. Nguyen A., Dormling I., Kremer A., Characterization of Pinus pinaster seedling growth in different photo-and thermoperiods in a phytotron as a basis for early selection, Scand. J. For. Res. 10 (1995) 129-139.
  41. Nordborg F., Nilsson U., Growth, damage and net nitrogen uptake in Picea abies (L.) Karst. seedlings, effects of site preparation and fertilisation, Ann. For. Sci. 60 (2003) 657-666 [EDP Sciences] [CrossRef].
  42. Norman J.M., Simulation of microclimates, in: Hatfield J.L., Thomason I.J. (Eds.), Biometeorology and integrated pest management, Academic Press, New York, 1989, pp. 65-99.
  43. O'Neill J.V., Webb R.A., Simultaneous determination of nitrogen, phosphorus, and potassium in plant material by automatic methods, J. Sci. Fd. Agric. 21 (1970) 217-219.
  44. Poorter H., Nagel O., The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review, Aust. J. Plant Physiol. 27 (2000) 595-607.
  45. Rao M., Terry N., Leaf phosphate status, photosynthetic, and carbon partitioning in sugar beet, Plant Physiol. 90 (1989) 814-819.
  46. Ratcliffe R.G., In vivo NMR studies of higher plants and algae, Adv. Bot. Res. 20 (1994) 43-123.
  47. Rincon E., Huante P., Growth responses of tropical deciduous tree seedlings to contrasting light conditions, Trees Struct. Funct. 7 (1993) 202-207.
  48. Rodriguez D., Keltjens W.G., Goudriaan J., Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorus conditions, Plant. Soil 200 (1998) 227-240 [CrossRef].
  49. Sato A., Oyanagi A., Wada M., Effect of phosphorus content on the emergence of tillers in wheat cultivars, JARQ 30 (1996) 27-30.
  50. Saur E., Effet de l'apport de phosphore, de carbonate de calcium et d'oligo-éléments (Cu, Mn, Zn, B) à trois sols sableux acides sur la croissance et la nutrition de semis de Pinus pinaster Soland in Aït. Croissance et nutrition en éléments majeurs, Agronomie 9 (1989) 931-940.
  51. Saur E., Influence d'une fertilisation cuprique et phosphatée sur la croissance et la nutrition minérale du pin maritime (Pinus pinaster Soland in Aït.) en sol sableux riche en matière organique, Ann. Sci. For. 47 (1990) 67-74.
  52. Sheriff D.W., Nambiar E.K.S, Fife D.N., Relationships between nutrient status, carbon assimilation and water use efficiency in Pinus radiata needles, Tree Physiol. 2 (1986) 73-88 [PubMed].
  53. Stockle C.O., Kiniry J.R., Variability in crop radiation-use efficiency associated with vapor-pressure deficit, Field Crops Res. 25 (1990) 171-181 [CrossRef].
  54. Timbal J., Crémière L., Najar M., Becker M., Réponse à la fertilisation phosphatée d'un peuplement adulte de pins maritimes des Landes de Gascogne, Rev. For. Fr. 51 (1999) 671-677.
  55. Topa M.A., Cheeseman J.M., Carbon and phosphorus partitioning in Pinus serotina seedlings growing under hypoxic and low-phosphorus conditions, Tree Physiol. 10 (1992) 195-207 [PubMed].
  56. Trichet P., Vauchel F., Bert D., Bonneau M., Fertilisation initiale et réitérée du pin maritime (Pinus pinaster At.) : principaux résultats de l'essai de Berganton, Rev. For. Fr. 52 (2000) 207-222.
  57. Utriainen J., Holopainen T., Responses of Pinus sylvestris and Picea abies seedlings to limited phosphorus fertilization and treatment with elevated ozone concentrations, Scand. J. For. Res. 17 (2002) 501-510 [CrossRef].
  58. Walters M.B., Reich P.B., Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings, Ecology 77 (1996) 841-853.