Free Access
Ann. For. Sci.
Volume 62, Number 8, December 2005
Page(s) 823 - 830
Published online 15 December 2005
References of Ann. For. Sci. 62 823-830
  1. Bardet S., Gril J., Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements, C. R. Mécanique 330 (2002) 549-556 [CrossRef].
  2. Bardet S., Beauchêne J., Thibaut B., Influence of basic density and temperature on mechanical properties perpendicular to grain of ten wood tropical species, Ann. For. Sci. 60 (2003) 49-59 [EDP Sciences] [CrossRef].
  3. Donaldson L.A., Lignification and lignin topochemistry: an ultrastructural view, Phytochemistry 57 (2001) 859-873 [CrossRef] [PubMed].
  4. Findley W.N., Lai J.S., Onaran K., Creep and relaxation of nonlinear viscoelastic materials, North-Holland Pub. Company, 1976.
  5. Genevaux J.-M., Le fluage à température linéairement croissante : Caractérisation des sources de viscoélasticité anisotrope du bois, Thèse de Doctorat de l'Institut National Polytechnique de Lorraine, Nancy, France, 1989.
  6. Hanhijärvi A., Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part II. Experimental results under constant conditions (viscoelastic creep), Holz als Roh- Werkst. 57 (1999) 365-372.
  7. Hazanov S., A new class of creep-relaxation functions, Int. J. Solids Struct. 32 (1995) 165-172.
  8. Huet C., Some aspects of the thermo-hygro-viscoelastic behaviour of wood, in: Morlier P. (Ed.), Mechanical Behaviour of Wood, Bordeaux, 1988, pp. 104-118.
  9. Martensson A., Mechanical behaviour of wood exposed to humidity variations, Doctoral dissertation, Lund Institute of Technology, Sweden, 1992.
  10. Mohager S., Toratti T., Long term bending creep of wood in cyclic relative humidity, Wood Sci. Technol. 27 (1993) 49-59.
  11. Nakano T., Time-temperature superposition principle on relaxational behaviour of wood as a multi-phase material, Holz Roh- Werkst. 53 (1995) 39-42.
  12. Ogden R.W., Non-linear elastic deformation, Dover Publication, New York, USA, 1997.
  13. Olsson A.-M., Salmén L., Viscoelasticity of in situ lignin as affected by structure, softwood vs. hardwood, ACS Symposium Series No. 489, American Chemical Society, 1992, pp. 133-143.
  14. Passard J., Perré P., Creep tests under water-saturated conditions: do the anisotropy ratios of wood change with the temperature and time dependency? 7th International IUFRO Wood Drying Conference, Tsukuba, Japan, 2001, pp. 230-237.
  15. Passard J., Perré P., Viscoelastic behaviour of green wood across the grain. Part I. Thermally activated creep tests up to 120 °C, Ann. For. Sci. 62 (2005) 707-716 [EDP Sciences] [CrossRef].
  16. Perré P., Aguiar O., Fluage du bois "vert" à haute température (120 °C): expérimentation et modélisation à l'aide d'éléments de Kelvin thermo-activés, Ann. For. Sci. 56 (1999) 403-416.
  17. Perré P., Passard J., A physical and mechanical model able to predict the stress field in wood over a wide range of drying conditions, Dry. Technol. 22 (2004) 27-44.
  18. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in Fortran, The Art of Scientific Computing, Cambridge University Press, 2nd ed., 1992, pp. 402-406.