Free Access
Ann. For. Sci.
Volume 63, Number 2, March 2006
Page(s) 111 - 118
Published online 23 February 2006
References of Ann. For. Sci. 63 111-118
  1. Abrams M.D., Where has all the white oak gone? Bioscience 53 (2003) 927-939.
  2. Abrams M.D., Ruffner C.M., Physiographic analysis of witness-tree distribution (1765-1798) and present forest cover through north central Pennsylvania, Can. J. For. Res. 25 (1995) 659-668.
  3. Abrams M.D., Orwig D.A., Demeo T.E., Dendroecological analysis of successional dynamics for a presettlement-origin white-pine mixed-oak forest in the Southern Appalachians, USA, J. Ecol. 83 (1995) 123-133.
  4. Bauerle W.L., Weston D.J., Bowden J.D., Dudley J.B., Toler J.E., Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species, Sci. Hortic. 101 (2004) 169-178 [CrossRef].
  5. Bilger W., Björkman O., Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis, Photosynth. Res. 25 (1990) 173-185 [CrossRef].
  6. Callaway R.M., Morphological and physiological-responses of 3 California oak species to shade, Int. J. Plant Sci. 153 (1992) 434-441 [CrossRef].
  7. Carvell K.L., Tryon E.H., The effect of environmental factors on the abundance of oak regeneration beneath mature oak stands, For. Sci. 7 (1961) 98-105.
  8. Cho D.S., Boerner R.E.J., Canopy disturbance pattern and regeneration of Quercus species in two Ohio old growth forests, Vegetatio 93 (1991) 9-18.
  9. Crow T.R., Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra) - a review, For. Sci. 34 (1988) 19-40.
  10. Dau H., Molecular mechanisms and quantitative models of variable photosystem II fluorescence, Photochem. Photobiol. 60 (1994) 1-23.
  11. Demmig-Adams B., Adams W.W., Xanthophyll cycle and light stress in nature: Uniform response to excess direct sunlight among higher plant species, Planta 198 (1996) 460-470 [CrossRef].
  12. Dietz K.-J., Schreiber U., Heber U., The relationship between the redox state of QA and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes, Planta 166 (1985) 219-226 [CrossRef].
  13. Fralish J.S., Cooks F.B., Chambers J.L., Harty F.M., Comparison of pre-settlement, second growth and old-growth forest on six site types in the Illinois Shawnee Hills, Am. Midl. Nat. 125 (1991) 294-309.
  14. Gardiner E.S., Hodges J.D., Growth and biomass distribution of cherrybark oak (Quercus pagoda Raf.) seedlings as influenced by light availability, For. Ecol. Manage. 108 (1998) 127-134 [CrossRef].
  15. Genty B., Harbinson J., Regulation of light utilization for photosynthetic electron transport, in: Baker N.R. (Ed.), Photosynthesis and the Environment, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, pp. 67-99.
  16. Genty B., Briantais J.M., Baker N.R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta 990 (1989) 87-92.
  17. Glitzenstein J.C., Canham C.D., McDonnell M.J., Streng D.R., Effects of environment and land-use history on upland forest of the Cary Arboretum, Hudson Valley, New York, Bull. Torrey Bot. Club 117 (1990) 106-122.
  18. Gottschalk K.W., Shade, leaf growth and crown development of Quercus rubra, Quercus velutina, Prunus serotina and Acer rubrum Seedlings, Tree Physiol. 14 (1994), 735-749.
  19. Hansen U., Fiedler B., Rank B., Variation of pigment composition and antioxidative systems along the canopy light gradient in a mixed beech/oak forest: a comparative study on deciduous tree species differing in shade tolerance, Trees 16 (2002) 354-364 [CrossRef].
  20. Hansen U., Schneiderheinze J., Rank B., Is the lower shade tolerance of Scots pine, relative to pendunculate oak related to the composition of photosynthetic pigments? Photosynthetica 40 (2002) 369-374 [CrossRef].
  21. Harbinson J., Hedley C.L., The kinetics of P-700+ reduction in leaves: A novel in situ probe of thylakoid functioning, Plant Cell Environ. 12 (1989) 357-369.
  22. Holmes T.H., Woodland canopy structure and the light response of juvenile Quercus lobata (Fagaceae), Am. J. Bot. 82 (1995) 1432-1442.
  23. Horton P., Hauge A., Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching, Biochim. Biophys. Acta 932 (1988) 107-115.
  24. Hunt R., Lloyd P.S., Growth and partitioning, New Phytol. 106 (1987) 235-249.
  25. Jarvis P.G., The adaptability to light intensity of seedlings of Quercus petraea (Matt.) Leibl., J. Ecol. 52 (1964) 545-571.
  26. Johnson G.N., Young A.J., Horton P., Activation of non-photochemical quenching in thylakoids and leaves, Planta 194 (1994) 550-556 [CrossRef].
  27. Johnson P.S., Shifley S.R., Rogers R., The ecology and silviculture of oaks, CABI Publishing, New York, 2002.
  28. Lavergne J., Trissl H-W., Theory of fluorescence induction in photosystem II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units, Biophys. J. 68 (1995) 2474-2492 [PubMed].
  29. Loach K., Shade tolerance in tree seedlings II. Growth analysis of plants raised under artificial shade, New Phytol. 69 (1970) 273-286.
  30. Loftis D.L., McGee C.E. (Eds.), Oak regeneration: Serious problems, practical recommendations, Department of Agriculture Forest Service, General Technical Report SE-84, Asheville, NC, 1993.
  31. McGee C.E., Northern red oak seedling growth varied by light intensity and seed source, USDA Forest Service Research Note SE, SE-90, 1968.
  32. Musselman R.C., Gatherum G.E., Effects of light and moisture on red oak seedlings, Iowa State J. Sci. 43 (1969) 273-284.
  33. Ögren E., Evans J.R., Photosynthetic light-response curves. I. The influence of CO2 partial pressure and leaf inversion, Planta 189 (1993) 182-190.
  34. Orwig D.A., Abrams M.D., Dendroecological and ecophysiological analysis of gap environments in mixed-oak understoreys of northern Virginia, Funct. Ecol. 9 (1995) 799-806.
  35. Osmond C.B., What is photoinhibition? Some insights from comparisons of shade and sun plants, in: Baker N.R., Bowyer J.R. (Eds.), Photoinhibition of Photosynthesis: From Molecular Mechanisms to Field, Environmental Plant Biology, BIOS, Oxford, 1994, pp. 1-24.
  36. Osmond C.B., Ramus J., Levavasseur G., Franklin L.A., Henley W.J., Fluorescence quenching during photosynthesis and photoinhibition of Ulva rotundata Blid., Planta 190 (1993) 97-106.
  37. Park Y.-I., Chow W.S., Anderson J.M., The quantum yield of photoinactivation of photosystem II in pea leaves is greater at low than high photon exposure, Plant Cell Physiol 36 (1995) 1163-1167.
  38. Park Y.-I., Chow W.S., Anderson J.M., Hurry V.M., Differential susceptibility of photosystem II to light stress in light acclimated pea leaves depends on the capacity for photochemical and non-radiative dissipation of light, Plant Sci. 115 (1996) 137-149 [CrossRef].
  39. Phares R.E., Growth of red oak (Quercus rubra L.) seedlings in relation to light and nutrients, Ecology 52 (1971) 669-672.
  40. Reich P.B., Teskey R.O., Johnson P.S., Hinckley T.M., Periodic root and shoot growth in oak, For. Sci. 26 (1980) 590-598.
  41. Rentch J.S., Fajvan M.A., Hicks R.R. Jr., Oak establishment and canopy accession strategies in five old-growth stands in the central hardwood forest region, For. Ecol. Manage. 184 (2003) 285-297 [CrossRef].
  42. Rice S.A., Bazzaz F.A., Quantification of plasticity of plant traits in response to light intensity: comparing phenotype at a common weight, Oecologia 78 (1989) 502-507 [CrossRef].
  43. Rogers R., White oak (Quercus alba L.), in: Burns R.M., Honkala B.H. (Eds.), Silvics of North America: Vol. 2, Hardwoods, Agric. Hand. 654, USDA Forest Service, Washington, DC, 1990, pp. 605-613.
  44. Rosenqvist E., Light acclimation maintains the redox state of the PS II electron acceptor QA within a narrow range over a broad range of light intensities, Photosynth. Res. 70 (2001) 299-310 [CrossRef] [PubMed].
  45. Schindler C., Lichtenthaler H.K., Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day, J. Plant Physiol. 148 (1996) 399-412.
  46. Schreiber U., Bilger W., Neubauer C., Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment if in vivo photosynthesis, in: Schulze E.D., Caldwell M.M. (Eds.), Ecophysiology of photosynthesis, Springer-Verlag, Berlin, 1994, pp. 49-70.
  47. Teskey R.O., Shrestha R.B., A relationship between carbon dioxide, photosynthetic efficiency and shade tolerance, Physiol. Plant. 63 (1985) 126-132.
  48. Valladares F., Chico J.M., Aranda I., Balaguer L., Dizengremel P., Manrique E., Dreyer E., The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity, Trees 16 (2002) 395-403.
  49. Van Kooten O., Snel J.F.H., The use of chlorophyll fluorescence nomenclature in plant stress physiology, Photosynth. Res. 25 (1990) 147-150 [CrossRef].
  50. Wagner R.G., Radosevich R., Neighborhood predictors of interspecific competition in young Douglas-fir plantation, Can. J. For. Res. 21 (1991) 821-828.
  51. Wang G.G., Van Lear D.H., Bauerle W.L., Effects of prescribed fires on the survival and growth of white oak (Quercus alba L.) seedlings, For. Ecol. Manage. 213 (2005) 328-337 [CrossRef].
  52. Wang G.G., Siemens J.A., Keenan V., Philippot D., Survival and growth of black and white spruce seedlings in relation to stock type, site preparation and plantation type in southeastern Manitoba, For. Chron. 76 (2000) 775-782.
  53. Ziegenhagen B., Kausch W., Productivity of young shaded oaks (Quercus robur L.) as corresponding to shoot morphology and leaf anatomy, For. Ecol. Manage. 72 (1995) 97-108 [CrossRef].