Free Access
Issue
Ann. For. Sci.
Volume 63, Number 3, April 2006
Page(s) 257 - 266
DOI https://doi.org/10.1051/forest:2006004
Published online 04 April 2006
References of Ann. For. Sci. 63  257- 266
  1. Abrams M.D., Kubiske M.E., Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: influence of light regime and shade-tolerance rank, For. Ecol. Manage. 31 (1990) 245-253 [CrossRef].
  2. Aranda I., Bergasa L.F., Gil L., Pardos J.A, Effects of relative irradiance on the leaf structure of Fagus sylvatica L. saplings planted in the understory of a Pinus sylvestris L. stand after thinning, Ann. For. Sci. 58 (2001) 673-680 [EDP Sciences] [CrossRef].
  3. Aussenac G., Ducrey M., Étude bioclimatique d'une futaie feuillue (Fagus silvatica L. et Quercus sessiliflora Salisb.) de l'est de la France : I - Analyse des profils microclimatiques et des caractéristiques anatomiques et morphologiques de l'appareil foliaire, Ann. Sci. For. 41 (1977) 265-284.
  4. Bazzaz F.A., The physiological ecology of plant succession: A comparative review, Annu. Rev. Ecol. Syst. 10 (1979) 351-371 [CrossRef].
  5. Boardman N.K., Comparative photosynthesis of sun and shade plants, Annu. Rev. Plant Physiol. 28 (1977) 355-377 [CrossRef].
  6. Bond B.J., Farnsworth B.T., Coulombe R.A., Winner W.E., Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance, Oecologia 120 (1999) 183-190 [CrossRef].
  7. Clearwater M.J., Meinzer F.C., Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees, Tree Physiol. 21 (2001) 683-690 [PubMed].
  8. Curt T., Coll L., Prévosto B., Balandier P., Kunstler G., Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition, Ann. For. Sci. 62 (2005) 51-60 [EDP Sciences] [CrossRef].
  9. Dreyer E., LeRoux X., Montpied P., Daudet F.A., Masson F., Temperature response of leaf photosynthetic capacity in saplings from seven temperate tree species, Tree Physiol. 21( 2001) 223-232.
  10. Dreyfus P., Gestion d'une évolution forestière majeure de l'arrière-pays méditerranéen : la maturation sylvigénétique des pinèdes pionnières ; conséquences pour la biodiversité sur le site pilote du Mont-Ventoux, Programme « Biodiversité et gestion forestière » du GIP Ecofor, 2001.
  11. Ducrey M., Variation in leaf morphology and branching pattern of some tropical rain forest species from Guadeloupe (French West Indies) under semi-controlled light conditions, Ann. Sci. For. 49 (1992) 553-570.
  12. Du Merle P., Le massif du Ventoux, Vaucluse : éléments d'une synthèse écologique, La Terre et la Vie, Revue d'Écologie appliquée 32 (1978) 7-295.
  13. Dungan R.J., Whitehead D., Duncan R.P., Seasonal and temperature dependence of photosynthesis and respiration for two co-occurring broad-leaved tree species with contrasting leaf phenology, Tree Physiol. 23 (2003) 561-568 [PubMed].
  14. Epron D., Godard D., Cornic G., Genty B., Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.), Plant Cell Environ. 18 (1995) 43-51.
  15. Epron D., Liozon R., Mousseau M., Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season, Tree Physiol. 16 (1996) 425-432 [PubMed].
  16. Evans J.R., Photosynthesis and nitrogen relationships in leaves of C3 plants, Oecologia 78 (1989) 9-19 [CrossRef].
  17. Evans J.R., Poorter H., Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain, Plant Cell Environ. 24 (2001) 755-767 [CrossRef].
  18. Farquhar G.D., von Caemmerer S., Berry J.A., A biochemical model of CO2 assimilation in leaves of C3 species, Planta 149 (1980) 78-90 [CrossRef].
  19. Frazer G.W., Canham C.D., Lertzman K.P., Gap Light Analyser (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation, Copyright 1999, Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbroock, New York, 1999.
  20. Givnish T.J., Adaptation to sun and shade: a whole plant perspective, Aust. J. Plant Physiol. 15 (1988) 63-92.
  21. Grassi G., Bagnaresi U., Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient, Tree Physiol. 21 (2001) 959-967 [PubMed].
  22. Grassi G., Meir P., Cromer R., Tompkins D., Jarvis J.G., Photosynthetic parameters in saplings of Eucalyptus grandis as affected by rate of nitrogen supply, Plant Cell Environ. 25 (2002) 1677-1688 [CrossRef].
  23. Grassi G., Vicinelli E., Ponti F., Cantoni L., Magnani F., Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern Italy, Tree Physiol. 25 (2005) 349-360 [PubMed].
  24. Han Q., Kawasaki T., Nakano T., Chiba Y., Spatial and seasonal variability of temperature responses of biochemical photosynthesis parameters and leaf nitrogen content within a Pinus densiflora crown, Tree Physiol. 24 (2004) 737-744 [PubMed].
  25. Harley P.C., Tenhunen J.D., Modeling the photosynthetic response of C3 leaves to environmental factors, in: Modeling crop photosynthesis - from biochemistry to canopy, vol. 19, American Society of Agronomy and Crop Science Society of America, Madison, Wis., 1991, pp. 17-39.
  26. Jayasekera R., Schleser G.H., Seasonal changes in potential net photosynthesis of sun and shade leaves of Fagus sylvatica L., J. Plant Pysiol. 133 (1988) 216-221.
  27. Johnson J.D., Tognetti R., Michelozzi M., Pinzauti S., Minotta G., Borghetti M., Ecophysiological responses of Fagus sylvatica saplings to changing light conditions: II. The interaction of light environment and soil fertility on seedling physiology, Physiol. Plantarum 101 (1997) 124-134.
  28. Kloeppel B.D., Abrams M.D., Kubiske M., Seasonal ecophysiology and leaf morphology of four successional Pennsylvania barrens species in open versus understory environments, Can. J. For. Res. 23 (1993) 181-189.
  29. Koike T., Kitao M., Maruyama Y., Mori S., Lei T., Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile, Tree Physiol. 21 (2001) 951-958 [PubMed].
  30. Le Roux X., Grand S., Dreyer E., Daudet F.A., Parameterization and testing of a biochemically based photosynthesis model for walnut (Juglans regia) trees and saplings, Tree Physiol. 19 (1999) 481-492 [PubMed].
  31. Le Roux X., Walcroft A.S., Daudet F.A., Sinoquet H., Chaves M.M., Rodrigues A., Osorio L., Photosynthetic light acclimation in peach leaves: importance of changes in mass: area ratio, nitrogen concentration, and leaf nitrogen partitioning, Tree Physiol. 21 (2001) 377-386 [PubMed].
  32. Masarovicova E., Minarcic P., Photosynthetic response and adaptation of Fagus sylvatica L. trees to light conditions: 2. Leaf chlorophyll contents, leaf dry matter, specific leaf area and mass, stomatal density, Biologia [Bratislava] 40 (1985) 473-481.
  33. Medlyn B.E., Loustau D., Delzon S., Temperature response of parameters of a biochemically based model of photosynthesis, I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.), Plant Cell Environ. 25 (2002) 1155-1165 [CrossRef].
  34. Meir P., Kruijt B., Broadmeadow M., Barbosa E., Kull O., Carswell F., Norbe A., Jarvis P.G., Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass by unit area, Plant Cell Environ. 25 (2002) 343-357 [CrossRef].
  35. Messier C., Doucet R., Ruel J.C., Claveau Y., Kelly C., Lechowicz M.J., Functional ecology of advance regeneration in relation to light in boreal forests, Can. J. For. Res. 29 (1999) 812-823 [CrossRef].
  36. Millard P., The accumulation and storage of nitrogen by herbaceous plants, Plant Cell Environ. 11 (1988) 1-8.
  37. Niinemets Ü., Distribution of foliar carbon and nitrogen across the canopy of Fagus sylvatica: adaptation to a vertical light gradient, Acta Oecologica 16 (1995) 525-541.
  38. Niinemets Ü., Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species, Funct. Ecol. 11 (1997) 518-531 [CrossRef].
  39. Niinimets Ü., Kull O., Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity, Tree Physiol. 18 (1998) 467-479 [PubMed].
  40. Niinemets Ü., Tenhunen J.D., A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade tolerant species Acer saccharum, Plant Cell Environ. 20 (1997) 845-866 [CrossRef].
  41. Niinimets Ü., Kull O., Tenhunen J.D., An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance, Tree Physiol. 18 (1998) 681-696 [PubMed].
  42. Piel C., Frak E., Le Roux X., Genty B., Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut, J. Exp. Bot. 53 (2002) 2423-2430 [CrossRef] [PubMed].
  43. Reich P.B., Walters M.B., Ellsworth D.S., Uhl C., Photosynthesis-nitrogen relations in Amazonian tree species: I. Patterns among species and communities, Oecologia 97 (1994) 62-72, II. Variation in nitrogen vis-a-vis specific leaf area influences mass- and area-based expression, Oecologia 97 (1994) 73-81 [CrossRef].
  44. Rijkers T., Pons T.L., Bongers F., The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance, Functional Ecology 14 (2000) 77-86 [CrossRef].
  45. Sestak Z., Ticha I., Catsky J., Solarova J., Posposilova J., Hodanova J., Integration of photosynthetic characteristics during leaf develop-ment, in: Sestak Z. (Ed.), Photosynthesis during leaf development, Dr W. Junk Publishers, Dordrecht, Netherlands, 1985, pp. 263-286.
  46. Stenberg P., Smolander H., Sprugel D., Smolander S., Shoot structure, light interception, and distribution of nitrogen in a Abies amabilis canopy, Tree Physiol. 18 (1998) 759-767 [PubMed].
  47. Tognetti R., Minotta G., Pinzauti S., Michelozzi M., Borghetti M., Acclimation to changing light conditions of long-term shade-grown beech (Fagus silvatica L.) seedlings of different geographic origins, Trees 12 (1998) 326-333.
  48. Uemura A., Ishida A., Nakano T., Terashima I., Tanabe H., Matsumoto Y., Acclimation of leaf characteristics of Fagus species to previous-year and current-year solar irradiances, Tree Physiol. 20 (2000) 945-951 [PubMed].
  49. Walcroft A., Le Roux X., Diaz-Espejo A., Dones N., Sinoquet H., Effects of crown development on leaf irradiance, leaf morphology and photosynthetic capacity in a peach tree, Tree Physiol. 22 (2002) 929-938 [PubMed].
  50. Walcroft A.S., Whitehead D., Silvester W.B., Kelliher F.M., The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don., Plant Cell Environ. 20 (1997) 1338-1348 [CrossRef].
  51. Warren C.R., Dreyer E., Adams M.A., Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores, Trees 17 (2003) 359-366.
  52. Wilson K.B., Baldocchi D.D., Hanson P.J., Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest, Tree Physiol. 20 (2000) 565-578 [PubMed].
  53. Xu L., Baldocchi D.D., Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature, Tree Physiol. 23 (2003) 865-877 [PubMed].