Free Access
Issue
Ann. For. Sci.
Volume 63, Number 3, April 2006
Page(s) 309 - 317
DOI https://doi.org/10.1051/forest:2006010
Published online 04 April 2006
References of Ann. For. Sci. 63  309- 317
  1. Avramidis S., The Basis of Sorption. International Conference of COST Action E8, Mechanical Performance of Wood and Wood Products, Copenhagen, Denmark, June 16-17, 1997.
  2. Bacour P., Daudin J.D., Development of a new method for fast measurement of water sorption isotherms in the high humidity range. Validation on gelatine gel, J. Food Eng. 44 (2000) 97-107 [CrossRef].
  3. Bao F.C., Jiang Z.H., Jiang H.M., Lu X.X., Luo X.Q., Zhang S.Y., Differences in wood properties between juvenile wood and mature wood in 10 species grown in China, Wood Sci. Technol. 35 (2001) 363-375 [CrossRef].
  4. Barker B., Owen N.L., Identifying softwoods and hardwoods by infrared spectroscopy, J. Chem. Educ. 76 (1999) 1706-1709.
  5. Bhat K.M., Priya P.B., Rugmini P., Characterisation of juvenile wood in teak, Wood Sci. Technol. 34 (2001) 517-532 [CrossRef].
  6. Catalán G., Las regiones de procedencia de Pinus sylvestris L. y Pinus nigra Arn. subsp. salzmannii (Dunal) Franco en España, INIA e ICONA, España, 1991.
  7. Chang H.T., Chang S.T., Moisture excluding efficiency and dimensional stability of wood improved by acylation, Bioresource Technol. 85 (2002) 201-204 [CrossRef].
  8. Chauhan S.S., Aggarwal P., Karmarkar A., Pandley K.K., Moisture adsorption behaviour of esterified rubber wood (Hevea brasiliensis), Holz Roh Werkst. 59 (2001) 250-253 [CrossRef].
  9. Community Bureau of Reference-CBR, Certified Reference Material, Certificate of Measurement CRM 302, Water content of microcrystalline cellulose (MCC) in equilibrium with the atmosphere above specified aqueous saturated SALT solutions at 25 ºC, 1989.
  10. Edvardsen K., Sandland K.M., Increasing drying temperature, its influence on the dimensional stability of wood, Holz Roh Werkst. 57 (1999) 207-209 [CrossRef].
  11. Elesini U.S., Cuden A.P., Richards A.F., Study of Green Cotton Fibres, Acta Chim. Slov. 49 (2002) 815-833.
  12. García Esteban L., Guindeo A., Palacios P., García Fernández F., Saturated salt method determination of hysteresis of Pinus sylvestris L. wood for 35 ºC isotherms, Mater. Constr. 54 (2004) 51-64.
  13. García Esteban L., Gril J., Palacios P., Guindeo A., Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles, Ann. For. Sci. 62 (2005) 275-284 [EDP Sciences] [CrossRef].
  14. Heliñska-Raczkowska L., Fabisiak E., Radial variation of earlywood vessel lumen diameter as an indicator of the juvenile growth period in ash (Fraxinus excelsior L.), Holz Roh Werkst. 57 (1999) 283-286 [CrossRef].
  15. Hermans P.H., Weidinger A., Quantitative X-ray investigations on the crystallinity of cellulose fibers, J. Appl. Physics 19 (1948) 491-506. (In: Anderson S., Serimaa R., Paakkari T., Sarampää P., Pesonen E., Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies), J. Wood Sci. 49 (2003) 531-537).
  16. Jowitt R., Wagstaffe P.J., The certification of the water content of microcrystaline cellulose (MCC) at 10 water activities, CRM 302, Commission of the European Communities, Community Bureau of Reference, EUR 12429, 1989.
  17. Kadita S., Yamada T., Suzuki M., Studies on rheological properties of wood. I. Effect of moisture content on the dynamic Young's modulus of wood, Mokuzai Gakkaishi. 7 (1961) 29-33.
  18. Khali D.P., Rawat S.P.S., Clustering of water molecules during adsorption of water in brown rot decayed and undecayed wood blocks of Pinus sylvestris, Holz Roh Werkst. 58 (2000) 340-341 [CrossRef].
  19. Kolin B., Janezic T.S., The effect of temperature, density and chemical composition upon the limit of hygroscopicity of wood, Holzforschung 50 (1996) 263-268.
  20. Kolin B., Danon G., Influence of temperature upon some physical and chemical properties of wood, Drev. Vysk. 43(3-4) (1998) 21-27.
  21. Labuza T.P., Moisture sorption: practical aspects of isotherm measurement and use, Amer. Assoc. Cereal Chemists, St. Paul, 1984.
  22. Macaya D., Diferenciación anatómica de la madera de Pinus sylvestris L. y de Pinus nigra Arnold subsp. salzmannii (Dunal) Franco en poblaciones sorianas, Proyecto Fin de Carrera, E.T.S.I. Montes, Universidad Politécnica de Madrid, 2002.
  23. Michell A.J., Higgins H.G., Infrared Spectroscopy in Forest Products Research, CSIRO Forestry and Forest Products, Melbourne, Australia, 2002.
  24. Mihranyan A., Piñas Llagostera A., Karmhag R., Stromme M., Ek R., Moisture sorption by cellulose powders of varying crystallinity, Int. J. Pharm. 269 (2004) 433-442 [CrossRef] [PubMed].
  25. Mutz R., Guilley E., Sauter U.H., Nepveu G., Modelling juvenile-mature wood transition in Scots pine (Pinus sylvestris L.) using nonlinear mixed-effects models, Ann. For. Sci. 61 (2004) 831-841 [EDP Sciences] [CrossRef].
  26. Obataya E., Tanaka F., Norimoto M., Tomita B., Hygroscopicity of heat-treated wood: I. Effects of after-treatments on the hygroscopicity of heat-treated wood, Mokuzai Gakkaishi 46 (2000) 77-87.
  27. Obataya E., Higashihara T., Tomita B., Hygroscopicity of heat-treated wood: III. Effects of steaming on the hygroscopicity of wood, Mokuzai Gakkaishi. 48 (2002) 348-355.
  28. Olsson A.M., Salmen L., The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy, Carbohyd. Res. 339 (2004) 813-818.
  29. Passialis C., Physico-chemical characteristics of waterlogged archaeological wood, Holzforschung 51 (1997) 111-113.
  30. Sèbe G., De Jéso B., The dimensional stabilisation of maritime pine sapwood (Pinus pinaster) by chemical reaction with organosilicon compounds, Holzforschung 54 (2000) 474-480 [CrossRef].
  31. Sernek M., Comparative Analysis of Inactivated Wood Surfaces, Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University for the degree of Doctor of Philosophy in Wood Science and Forest Products, Virginia, 2002.
  32. Siau J.F., Wood: Influence of moisture on physical properties, Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, 1995.
  33. Simpson W., Sorption theories applied to wood, Wood Fiber Sci. 12 (1980) 183-195.
  34. Singh P.C., Singh R.K., Application of GAB model for water sorption isotherms of food products, J. Food Process. Pres. 20 (1996) 203-220.
  35. Vaca-García C., Borredón M.E., Solvent-free fatty acylation of cellulose and lignocellulosic wastes: Part 2. Reactions with fatty acid, Bioresource Technol. 70 (1999) 135-142 [CrossRef].
  36. Venalainen M., Harju AM., Saranpää P., Kainulainen P., Tiitta M., Velling P., The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood, Wood Sci. Technol. 38 (2004) 109-118 [CrossRef].
  37. Viel S., Capitani D., Proietti N., Ziarelli F., Segre A.L., NMR spectroscopy applied to the Cultural Heritage: a preliminary study on ancient wood characterisation, Appl. Phys A Mater. 79 (2004) 357-361.
  38. Violaz P.E., Rovedo C.O., Equilibrium sorption isotherms and thermodynamic properties of starch and gluten, J. Food Eng. 40 (1999) 287-292 [CrossRef].
  39. Wang S.Y., Chio C.M., The wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan IV. The variation of the degree of crystallinity of cellulose, Mokuzai Gakkaishi. 36 (1990) 909-916.
  40. Wang S.Y., Chio C.M., Equilibrium moisture contents of six wood species and their influences, Mokuzai Gakkaishi. 39 (1993) 126-137.
  41. Yasuda R., Minato K., Norimoto M., Moisture adsorption thermodynamics of chemically modified wood, Holzforschung 49 (1995) 548-554.