Free Access
Issue
Ann. For. Sci.
Volume 63, Number 8, December 2006
Page(s) 897 - 904
DOI https://doi.org/10.1051/forest:2006073
Published online 09 December 2006
References of  Ann. For. Sci. 63 (2006) 897-904
  1. DeBell J.D., Gartner B.L., DeBell D.S., Fiber length in young hybrid Populus stems grown at extremely different rates, Can. J. For. Res. 28 (1998) 603-608 [CrossRef].
  2. Falconer D.S., Mackay T.F., Introduction to quantitative genetics, Prentice Hall Harlow, England, 1996.
  3. Gwaze D.P., Wolliams J.A., Kanowski P.J., Bridgwater F.E., Interactions of genotype with site for height and stem straightness in Pinus taeda in Zimbabwe, Silvae Genet. 50 (2001) 135-140.
  4. Isik F., Boos D.D., Li B., The distribution of genetic parameter estimates and confidence intervals from small disconnected diallels, Theor. Appl. Genet. 110 (2005) 1236-1243 [CrossRef] [PubMed].
  5. Jett J.B., Weir R.J., Barker J.A., The inheritance of cellulose in loblolly pine, TAPPI Forest Biology Conference Proceedings, TAPPI Press, Madison 1977.
  6. Li B., McKeand S., Weir R., Tree improvement and sustainable forestry - impact of two cycles of loblolly pine breeding in the USA, For. Genet. 6 (1999) 229-234.
  7. Littell R.C., Milliken G.A., Stroup W.W., Wolfinger R.D., SAS System for Mixed Models, SAS Institute Inc. Cary, NC, 1996.
  8. Loo J.A., Tauer C.G., McNew R.W., Genetic-variation in the time of transition from juvenile to mature wood in loblolly-pine (Pinus taeda L.), Silvae Genet. 34 (1985) 14-19.
  9. Lynch M., Walsh B., Genetics and analysis of quantitative traits, Sinauer Associates, Inc., Sunderland, MA, 1998.
  10. McKeand S.E., Eriksson G., Roberds J.H., Genotype by environment interaction for index traits that combine growth and wood density in loblolly pine, Theor. Appl. Genet. 94 (1997) 1015-1022 [CrossRef].
  11. Pearson R.G., Gilmore R.C., Effect of fast growth-rate on the mechanical-properties of loblolly-pine, For. Prod. J. 30 (1980) 47-54.
  12. Shupe T.F., Choong E.T., Yang C.H., The effects of silvicultural treatments on the chemical composition of plantation-grown loblolly pine wood, Wood Fiber Sci. 28 (1996) 295-300.
  13. Shupe T.F., Hse C.Y., Choong E.T., Groom L.H., Differences in some chemical properties of innerwood and outerwood from five silviculturally different loblolly pine stands, Wood Fiber Sci. 29 (1997) 91-97.
  14. Sykes R., Isik F., Li B., Kadla J., Chang H.M., Genetic variation of juvenile wood properties in a loblolly pine progeny test, TAPPI 2 (2003) 3-8.
  15. Szymanski M., Tauer C., Loblolly pine provenance variation in age of transition from juvenile to mature wood specific gravity, For. Sci. 37 (1991) 160-174.
  16. Xiang B., Li B., A new mixed analytical method for genetic analysis of diallel data, Can. J. For. Res. 31 (2001) 2252-2259 [CrossRef].
  17. Yokoyama T., Kadla J.F., Chang H.-M., Microanalytical method for the characterization of fiber components and morphology of woody plants, J. Agric. Food Chem. 50 (2002) 1040-1044 [CrossRef] [PubMed].
  18. Yu Q., Pulkkinen P., Rautio M., Haapanen M., Alen R., Stener L.G., Beuker E., Tigerstedt P.M., Genetic control of wood physicochemical properties, growth, and phenology in hybrid aspen clones, Can. J. For. Res. 31 (2001) 1348-1356 [CrossRef].
  19. Zobel B., The changing quality of the world wood supply, Wood Sci. Technol. 18 (1984) 1-17 [CrossRef].