Free Access
Issue
Ann. For. Sci.
Volume 64, Number 1, January-February 2007
Page(s) 1 - 9
DOI https://doi.org/10.1051/forest:2006082
Published online 16 January 2007
References of  Ann. For. Sci. 64 (2007) 1-9
  1. Anonymous, Australian forest and wood product statistics, ABARE, Canberra, 2004.
  2. Bastien J.C.H., Roman-Amat B., Predicting Douglas-fir (Pseudotsuga menziesii Mirb.) Franco) volume at age 15 with early traits, Silvae Genet. 39 (1990) 29-34.
  3. Brown A.G., Experience in management of a radiata pine seed orchard at Tallaganda State Forest, New South Wales, Aust. For. Res. 5, (1971) 15-30.
  4. Burdon R.D., Harris J.M., Wood density in radiata pine clones on four different sites, N.Z. J. For. Sci. 3, (1973) 286-303.
  5. Cave I.D., Walker J.C.W., Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle, For. Prod. J. 44 (1994) 43-48.
  6. Cotterill P.P., Dean C.A., Changes in the genetic control of growth of radiata pine to 6-years and efficiencies of early selection, Silvae Genet. 37 (1988) 138-146.
  7. Cown D.J., McConchie D.L., Effects of thinning and fertilizer application on wood properties of Pinus radiata, N.Z. J. For. Sci. 11 (1981) 79-91.
  8. Cown D.J., McConchie D.L., Young G.D., Radiata pine: wood properties survey, FRI Bulletin No. 50, Forest research Institute, Rotorua, New Zealand, 1991, 50 p.
  9. Cown D.J., Young G.D., Burdon R.D., Variation in wood characteristics of 20-year-old half-sib families of Pinus radiata, N.Z. J. For. Sci. 22 (1992) 63-76.
  10. Danjon, F., Heritabilities and genetic correlations for estimated growth curve parameters in maritime pine, Theor. Appl. Genet. 89 (1994) 911-921 [CrossRef].
  11. DeBell J.D., Tappeiner J.C., Krahmer R.L., Wood density of western hemlock: effect of ring width, Can. J. For. Res. 24 (1994) 638-641.
  12. Donaldson L.A., Burdon R.D., Clonal variation and repeatability of microfibril angle in Pinus radiata, N.Z. J. For. Sci. 25 (1995) 164-174.
  13. Downes G.M., Wimmer R., Evans R., Understanding wood formation: Gains to commercial forestry through tree ring research, Dendrochronologia 20 (2002) 37-51 [CrossRef].
  14. Dutilleul P., Herman M., Avella Shaw T., Growth rate effects on correlations among ring width, wood density, and mean tracheid length in Norway spruce (Picea abies), Can. J. For. Res. 28 (1998) 56-68 [CrossRef].
  15. Evans R., Hughes M.A., Menz D.J., Microfibril angle variation by scanning x-ray diffractometry, Appita J. 52 (1999) 363-367.
  16. Evans R., Ilic J., Rapid prediction of wood stiffness from microfibril angle and density, For. Prod. J. 51 (2001) 53-57
  17. Eriksson G., Jonsson A., Dormling I., Norell L., Stener L.G., Retrospective early tests of Pinus sylvestris L. seedlings grown under five nutrient regimes, For. Sci. 39 (199) 95-117.
  18. Falconer D.S., Mackay T.F.C., Introduction to Quantitative Genetics. Addison Wesley Longman Group Ltd, UK, 4th ed., 1996, 464 p.
  19. Gwaze D.P., Bridgwater F.E., Byram T.D., Woolliams J.A., Williams C.G., Predicting age-age genetic correlations in tree-breeding programs: a case study of Pinus taeda L., Theor. Appl. Genet. 100 (2000) 199-206 [CrossRef].
  20. Hannrup B., Ekberg I., Age-age correlations for tracheid length and wood density in Pinus sylvestris, Can. J. For. Res. 28 (1998) 1373-1379 [CrossRef].
  21. Hodge G.R., White T.L., Genetic parameter estimates for growth traits at different ages in slash pine and some implications for breeding, Silvae Genet. 41 (1992) 252-261.
  22. Hylen G., Age trends in genetic parameters of wood density in young Norway spruce, Can. J. For. Res. 29 (1999) 135-143 [CrossRef].
  23. Johnson G.R., Sniezko R.A., Mandel N.L., Age trends in Douglas-fir genetic parameters and implications for optimum selection age, Silvae Genet. 46 (1997) 349-358.
  24. King J.N., Burdon R.D., Time trends in inheritance and projected efficiencies of early selection in a large 17-year-old progeny test of Pinus radiata, Can. J. For. Res. 21 (1991) 1200-1207.
  25. Kumar S., Lee J., Age-age correlations and early selection for end-of-rotation wood density in radiata pine, For. Gen. 9 (2002) 323-330.
  26. Lambeth C.C., Juvenile-mature correlations in Pinaceae and implications for early selection, For. Sci. 26 (1983) 571-580.
  27. Lambeth C.C., van Buijtenen J.P., Duke S.D., McCullough R.B., Early selection is effective in 20-year-old genetic tests of loblolly pine, Silvae Genet. 32 (1983) 210-215.
  28. Li B., Mckeand S.E., Allen H.L., Seedling shoot growth of loblolly pine families under two nitrogen levels as related to 12-year height. Can. J. For. Res. 21 (1991) 842-847.
  29. Li L., Wu H.X., Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata, Can. J. For. Res. 35 (2005) 1-11 [CrossRef].
  30. Magnussen S., Growth differentiation in white spruce crop tree progenies, Silvae Genet. 42 (1993) 258-266.
  31. Matheson A.C., Raymond C.A., The impact of genotype $\times$ environment interactions on Australian Pinus radiata breeding programs, Aust. For. Res. 14 (1984) 11-25.
  32. Matheson A.C., Spencer D.J., Magnussen D., Optimum age for selection in Pinus radiata basal area under bark for age:age correlations, Silvae Genet. 43 (1994) 352-357.
  33. Matheson A.C., Yang J.L., Spencer D.J., Breeding radiata pine for improvement of sawn product value, CTIA/IUFRO Wood quality Workshop IV. 1997, pp. 19-26.
  34. McKinley R., Klitscher K., Factors affecting wood density of radiata pine - an update, FRI Bulletin No. 201, Forest research Institute, Rotorua, New Zealand, 1995, pp. 46-53.
  35. Nyakuengama J.G., Matheson A.C., Evans R., Spencer D., Vinden P., Time trends in the genetic control of wood microstructure traits in Pinus radiata, Appita 50 (2002) 486-494.
  36. Nyakuengama J.G., Downes G.M., Ng J., Growth and density responses to later-age fertilizer application in Pinus radiata D. Don, IAWA J. 23 (2002) 431-448.
  37. Pharis R.P., Yeh F.C., Dancik B.P., Superior growth potential in trees: what is its basis, and can it be tested for at an early age? Can. J. For. Res. 21 (1991) 368-374.
  38. SAS Institute Inc., SAS/STAT $^\circledR$ software: changes and enhancements through release 6.12. SAS Institute Inc., Cary, N.C., 1997.
  39. Shelbourne C.J.A., Genetics of adding value to the end-products of radiata pine. IUFRO '97 Genetics of radiata pine, FRI bulletin No. 203, 1997, pp. 129-141.
  40. Siemon G.R., Effects of thinning on crown structure, stem form and wood density of radiata pine. Ph.D. thesis, Australian National University, Australia, 1973.
  41. Tasissa G., Burkhart H.E., Modelling thinning effects on ring specific gravity of loblolly pine (Pinus taeda), For. Sci. 44 (1998) 212-223.
  42. Walker J.C.F., Butterfield B.G., The importance of microfibril angle for the processing industries, N.Z. Forestry 40 (1995) 34-40.
  43. Walker J.F.C., Nakada R., Understanding corewood in some softwoods: a selective review on stiffness and acoustics, Int. For. Rev. 1 (1999) 251-259.
  44. Williams C.G., The influence of shoot ontogeny on juvenile-mature correlation in Loblolly pine, For. Sci. 33 (1987) 441-422.
  45. Wimmer R., Downes G.M., Temporal variation of the ring width - wood density relationship in spruce stands affected by air pollution, IAWA J. 24 (2003) 53-61.
  46. Williams C.G., Accelerated short-term genetic testing for loblolly pine families, Can. J. For. Res. 18 (1988) 1085-1089.
  47. Wood M., Stephens N., Allison B., Howell C., Plantations of Australia - A report from the National Plantation Inventory and the National Farm Forest Inventory, National Forest Inventory, Bureau of Rural Science, Canberra, 2001.
  48. Wu H.X., Study of early selection in tree breeding: 2. Advantage of early selection through shortening of breeding cycle, Silvae Genet. 79-83, 1999.
  49. Wu H.X., Yang J., McRae T.A., Li L., Powell M.B., Genetic relationship between breeding objective and early selection criterion traits in Australia radiata pine population, CSIRO CFFP Technical Report 1402 and STBA Technical Report TR04-01, 2004, 51 p.
  50. Ying C.C., Morgenstern E.K., Correlations of height growth and heritabilities at different ages in white spruce. Silvae Genet. 28 (1979) 181-185.
  51. Zas R., Merlo E., Fernandez-Lopez L., Juvenile-mature genetic correlations in Pinus pinaster under different nutrient $\times$ water regimes, Silvae Genet. 53 (2004) 124-129.
  52. Zobel B.J., van Buijtenen J.P., Wood variation: its causes and control, Springer Series in Wood Science, Springer-Verlag, Berlin, 1989, 363 p.