Free Access
Issue
Ann. For. Sci.
Volume 64, Number 8, December 2007
Page(s) 799 - 806
DOI https://doi.org/10.1051/forest:2007062
Published online 22 November 2007
References of  Ann. For. Sci. 64 (2007) 799-806
  1. Burdon R.D., Kibblewhite R.P., Walker J.C.F., Megraw R.A., Evans R., Cown D.J., Juvenile versus mature wood: A new concept, orthogonal to corewood versus outerwood, with special reference to Pinus radiata and P. taeda, For. Sci. 50 (2004) 399-415.
  2. Cave I.D., Walker J.C.F., Stiffness of wood in fast-grown plantation softwoods - The influence of microfibril angle, For. Prod. J. 44 (1994) 43-48.
  3. Costa e Silva J., Borralho N.M.G., Wellendorf H., Genetic parameter estimates for diameter growth, pilodyn penetration and spiral grain in Picea abies (L.) Karst, Silvae Genet. 49 (2000) 29-36.
  4. Cown D.J., Hébert J., Ball R., Modelling radiata pine lumber characteristics. Part 1: Mechanical properties of small clears, N.Z. J. For. Sci. 29 (1999) 203-213.
  5. Danborg F., Juvenile wood in Norway and sitka spruce. Anotomy, density, drying properties, visual grading and strength properties, Forskningsserien nr. 18-1996, Forskningscenteret for Skov & Landskap, Hørsholm, 1996, 1996, pp. 1-40.
  6. Dence C.W., The Determination of lignin, in: Lin S.Y., Dence C.W. (Eds.), Methods in Lignin Chemistry, Springer-Verlag, Heidelberg, 1992, pp. 33-61.
  7. Downes G.M., Nyakuengama J.G., Evans R., Northway R., Blakemore P., Dickson R.L., Lausberg M., Relationship between wood density, microfibril angle and stiffness in thinned and fertilized Pinus radiata, Iawa J. 23 (2002) 253-265.
  8. Evans R., A variance approach to the X-ray diffractometric estimation of microfibril angle in wood, Appita J. 52 (1999) 283-289, 294.
  9. Evans R., Ilic J., Rapid prediction of wood stiffness from microfibril, angle and density, For. Prod. J. 51 (2001) 53-57.
  10. Fins L., Friedman S.T., Brotschol J.V., Handbook of quantitative forest genetics, Kluwer Academic Publishers, London, 1992.
  11. Gindl W., Teischinger A., Axial compression strength of Norway spruce related to structural variability and lignin content, Compos. Part A - Appl. Sci. Manuf. 33 (2002) 1623-1628 [CrossRef].
  12. Grabianowski M., Manley B., Walker J.C.F., Acoustic measurements on standing trees, logs and green lumber, Wood Sci. Technol. 40 (2006) 205-216 [CrossRef].
  13. Hannrup B., Cahalan C., Chantre G., Grabner M., Karlsson B., Le Bayon I., Jones G.L., Müller U., Pereira H., Rodrigues J.C., Rosner S., Rozenberg P., Wilhelmsson L., Wimmer R., Genetic parameters of growth and wood quality traits in Picea abies, Scand. J. Forest Res. 19 (2004) 14-29 [CrossRef].
  14. Hannrup B., Grabner M., Karlsson B., Müller U., Rosner S., Wilhelmsson L., Wimmer R., Genetic parameters for spiral-grain angle in two 19-year-old clonal Norway spruce trials, Ann. For. Sci. 59 (2002) 551-556 [CrossRef] [EDP Sciences].
  15. Hansen J.K., Roulund H., Genetic parameters for spiral grain, stem form, pilodyn and growth in 13 years old clones of Sitka spruce (Picea sitchensis (Bong.) Carr.), Silvae Genet. 46 (1997) 107-113.
  16. Hansen J.K., Roulund H., Genetic parameters for spiral grain in two 18-year-old progeny trials with Sitka spruce in Denmark, Can. J. For. Res. 28 (1998) 920-931 [CrossRef].
  17. Henderson C.R., Selection index and expected genetic advance, in: Hanson W.D., Robinson H.F. (Eds.), Statistical genetics and plant breeding, National Academy of Sciences and National Research Council, Publ. No. 982, Washington, DC, 1963, pp. 141-163.
  18. Hylen G., Genetic variation of wood density and its relationship with growth traits in young Norway spruce, Silvae Genet. 46 (1997) 55-60.
  19. Hylen G., Age trends in genetic parameters of wood density in young Norway spruce, Can. J. For. Res. 29 (1999) 135-143 [CrossRef].
  20. Kollmann F.F.P., Côté Jr. W.A., Principles of wood science and technology. I. Solid wood, Springer-Verlag, Berlin, 1968.
  21. Kucera B., Skandinaviske normer for testing av små feilfrie prøver av heltre, Skogforsk, Norwegian Forest Research Institute, Ås, 1992.
  22. Kucera B., A hypothesis relating current annual height increment to juvenile wood formation in Norway spruce, Wood Fiber Sci. 26 (1994) 152-167.
  23. Kumar S., Genetic parameter estimates for wood stiffness, strength, internal checking, and resin bleeding for radiata pine, Can. J. For. Res. 34 (2004) 2601-2610 [CrossRef].
  24. Kumar S., Dungey H.S., Matheson A.C., Genetic parameters and strategies for genetic improvement of stiffness in radiata pine, Silvae Genet. 55 (2006) 77-84.
  25. Kumar S., Jayawickrama K.J.S., Lee J., Lausberg M., Direct and indirect measures of stiffness and strength show high heritability in a wind-pollinated radiata pine progeny test in New Zealand, Silvae Genet. 51 (2002) 256-261.
  26. Lichtenegger H., Reiterer A., Stanzl-Tschegg S.E., Fratzl P., Variation of cellulose microfibril angles in softwoods and hardwoods - A possible strategy of mechanical optimization, J. Struct. Biol. 128 (1999) 257-269 [CrossRef] [PubMed].
  27. Lindström H., Harris P., Nakada R., Methods for measuring stiffness of young trees, Holz Roh- Werkst. 60 (2002) 165-174 [CrossRef].
  28. Lindström H., Harris P., Sorensson C.T., Evans R., Stiffness and wood variation of 3-year old Pinus radiata clones, Wood Sci. Technol. 38 (2004) 579-597 [CrossRef].
  29. Megraw R., Bremer D., Leaf G., Roers J., Stiffness in loblolly pine as a function of ring position and height, and its relationship to microfibril angle and specific gravity, in: Nepveu G. (Ed.), Connection between silviculture and wood quality trough modelling approaches and simulation software, Proceedings of IUFRO WP S5.01-04 Third Workshop, La Londe-Les-Maures, France, 1999, pp. 341-349.
  30. Montgomery D.C., Design and analysis of experiments, John Wiley & Sons, inc., New York, 1997.
  31. Northcott P.L., The effect of spiral grain on the usefulness of wood, Forest Products Laboratory, Canada. Reprint from Proceedings of the meeting of IUFRO section 41, Melbourne, Australia, Vancouver, BC, 1965, pp. 1-18.
  32. Olesen P.O., The interrelation between basic density and ring width of Norway spruce, Rapport fra Det Forstlige Forsøgsvæsen i Danmark 35 (1976) 340-359.
  33. Poke F.S., Potts B.M., Vaillancourt R.E., Raymond C.A., Genetic parameters for lignin, extractives and decay in Eucalyptus globulus, Ann. For. Sci. 63 (2006) 813-821 [CrossRef] [EDP Sciences].
  34. Raiskila S., Pulkkinen M., Laakso T., Fagerstedt K., Löija M., Mahlberg R., Paajanen L., Ritschkoff A.C., Saranpää P., FTIR spectroscopic prediction of Klason and acid soluble lignin variation in Norway spruce clones, Silva Fenn. 41 (2007) 351-371.
  35. Raiskila S., Saranpää P., Fagerstedt K., Laakso T., Löija M., Mahlberg R., Paajanen L., Ritschkoff A.C., Growth rate and wood properties of Norway spruce cutting clones on different sites, Silva Fenn. 40 (2006) 247-256.
  36. Rathgeber C.B.K., Decoux V., Leban J.-M., Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir Pseudotsuga menziesii (Mirb.) Franco), Ann. For. Sci. 63 (2006) 699-706 [CrossRef] [EDP Sciences].
  37. Regent Instruments Inc., WinDendro 2002b, Regent Instruments Inc., Quebec, 2002.
  38. Reiterer A., Lichtenegger H., Tschegg S., Fratzl P., Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls, Philosophical Mag. A 79 (1999) 2173-2184.
  39. Saranpää P., Wood density and growth, in: Barnett J.R., Jeronimidis G. (Eds.), Wood quality and its biological basis, Blackwell Publishing & CRC Press. Biological Sciences Series, 2003, pp. 87-117.
  40. Saranpää P., Repola J., Strenght of Norway spruce from both mixed stands and monocultures, The Finnish For. Inst., Research Papers 822 (2001) 33-39.
  41. Sarén M.P., Serimaa R., Andersson S., Paakkari T., Saranpää P., Pesonen E., Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.), J. Struct. Biol. 136 (2001) 101-109 [CrossRef] [PubMed].
  42. Sarén M.P., Serimaa R., Andersson S., Saranpää P., Keckes J., Fratzl P., Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway spruce, Trees-Struct. Funct. 18 (2004) 354-362.
  43. SAS Institute Inc., SAS/STAT user's guide, version 9, SAS Institute Inc., Cary, NC, USA, 2003.
  44. Skrøppa T., Tho T., Diallel crosses in Picea abies. I. Variation in seed yield and seed weight, Scand. J. For. Res. 5 (1990) 355-367.
  45. Säll H., Spiral grain in Norway spruce, Acta Wexionesia 22/2002 (2002) 1-171.
  46. Timmel T.E., Compression wood in gymnosperms, Springer-Verlag, New York, 1986.
  47. Tveite B., Site-index curves for Norway spruce (Picea abies (L.) Karst), Meddelelser fra Norsk institutt for skogforskning 33 (1977) 1-84.
  48. Van Buijtenen J.P., Fundamental genetic principles, in: Fins L., Friedman S.T., Brotschol J.V. (Eds.), Handbook of quantitative forest genetics, Kluwer academic publishers, Dordrecht, 1992, pp. 29-68.
  49. Wilson T.R.C., The effect of spiral grain on the strength of wood, J. For. XIX (1921) 740-747.
  50. Zobel B., van Buijtenen J.P., Wood variation: its causes and control, Springer-Verlag, Berlin, 1989.