Free Access
Issue
Ann. For. Sci.
Volume 66, Number 1, January-February 2009
Article Number 110
Number of page(s) 8
DOI https://doi.org/10.1051/forest/2008078
Published online 31 January 2009
References of  Ann. For. Sci. 66 (2009) 110
  1. Ahhaji A., El Bakali I., George B., and Merlin A., 2003. Analyse par spectroscopie de résonance paramagnétique électronique (RPE) de bois traités thermiquement exposés à un rayonnement de type solaire. Annales Gis-bois (Eds.), Nancy, France.
  2. Arias B., Pevida C., Fermoso J., Plaza M.G., Rubier F., and Pisa J.J., 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 89: 169–175 [CrossRef].
  3. Baumberger S., Dole P., and Lapierre C., 2002. Using transgenic poplars to elucidate the relationship between the structure and the thermal properties of lignins. J. Agric. Food Chem. 50: 2450–2453 [PubMed] [CrossRef].
  4. Bilbao R., Mastral J.F., Aldea M.E., and Ceamanosa J., 1997. The influence of the percentage of oxygen in the atmosphere on the thermal decomposition of lignocellulosic materials. J. Anal. Appl. Pyrolysis 42: 189–202 [CrossRef].
  5. Blazek J., Buryan P., Grouset D., Soudais Y., and Tekac V., 2001. Study of the thermical degradation of lignin in the inert atmosphere. Entropie 235/236: 6–11.
  6. Boonstra M., van Acker J., Tjeerdsma B., and Kegel E.V., 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 64: 679–690 [EDP Sciences] [CrossRef].
  7. Borrega M. and Kärenlampi1 P.P., 2007. Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz Roh Werkst. 66: 63–69 [CrossRef].
  8. Bourgois J., Bartholin M.C., and Guyonnet R., 1989. Thermal treatment of wood: analysis of the obtained product. Wood Sci. Technol. 23: 303–310 [CrossRef].
  9. Branca C. and Di Blasi C., 2003. Kinetics of the isothermal degradation of wood in the temperature range 528-708K. J. Anal. Appl. Pyrolysis 67: 207–219 [CrossRef].
  10. Brezny R., Surina L., and Kosik M., 1984. Low temperature thermolysis of lignins. II. Thermofractography and thermal analysis of $\beta$-O-4 model compounds. Holzforschung 38: 19–24 [CrossRef].
  11. Chakar F.S. and Ragauskas A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crop. Prod. 20: 131–141 [CrossRef].
  12. Chiang V.L. and Funaoka M., 1988. The formation and quantity of diphenylmethane type structures in residual lignin during kraft delignification of Douglas-fir. Holzforschung 42: 385–391 [CrossRef].
  13. Dence C.W., 1992.The determination of lignin. In: Dence C.W. (Ed.), Method in lignin chemistry, Springer-Verlag, Berlin, Heiderberg, New York, pp. 33–61.
  14. Fengel D. and Wegner G., 1989. Wood – Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, New-York, 344 p.
  15. Funaoka M., Kako T., and Abe L., 1990. Condensation of lignin during heating of wood. Wood Sci. Technol. 24: 277–288 [CrossRef].
  16. Gellerstedt G., Lindfors E.L., Lapierre C., and Monties B., 1984. Structural changes in lignin during kraft cooking. Part 2. Characterization by acidolysis. Svensk Papperstidning: 61–67.
  17. Gellerstedt G., Majtnerova A., and Zhang L., 2004. Towards a new concept of lignin condensation in kraft pulping. Initial results. C.R. Biol. 327: 817–826.
  18. Kocaefe D., Chaudhry B., Poncsak S., Bouazara M., and Pichette A., 2006. Thermogravimetric study of high temperature treatment of aspen: effect of treatment parameters on weight loss and mechanical properties. J. Mater. Sci. 42: 854–866 [CrossRef].
  19. Kotilainen R.A., Toivanen T.J., and Alen R.J., 2000. FTIR monitoring of chemical changes in softwood during heating. J. Wood Chem. Technol. 20: 307–320 [CrossRef].
  20. Lindberg J.J., Levon K., and Kuusela T., 2003. Modification of lignin. Acta Polymer. 39: 47–50 [CrossRef].
  21. Mouras S., Girard P., Rousset P., Permadi P., Dirol D., and Labat G., 2002. Propriétés physiques de bois peu durables soumis à un traitement de pyrolyse ménagée. Ann. For. Sci. 59: 317–326 [EDP Sciences] [CrossRef].
  22. Nguila Inari G., Petrissans M., and Gerardin P., 2007. Chemical reactivity of heat-treated wood. Wood Sci. Technol. 41: 157–168 [CrossRef].
  23. Nuopponen M., Vuorinen T., Jämsä S., and Viitaniemi P., 2005. Thermal modifications in softwood studied by FTIR and UV resonance Raman spectroscopies. J. Wood Chem. 24: 13–26 [CrossRef].
  24. Placet V., Passard J., and Perré P., 2008. Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135 °C : evidence of thermal degradation. J. Mater. Sci. 43: 3210–3217 [CrossRef]
  25. Rapp A.O., 2001. Review on heat treatments of wood. COST Action E22 – Environmental of wood protection, Antibes, France.
  26. Rolando C., Montiés B., and Lapierre C., 1992. Thioacidolysis. In: Lin S.Y. and Dence C.W. (Eds.), Methods in lignin chemistry, Springer-verlag, Berlin, pp. 334–349.
  27. Rousset P., Turner I., Donnot A., and Perré P., 2006. Choix d'un modèle de pyrolyse ménagée du bois à l'échelle de la microparticule en vue de la modélisation macroscopique. Ann. For. Sci. 63: 213–229 [EDP Sciences] [CrossRef].
  28. Scheffer T.C. and Eslyn W.E., 1961. Effect of heat on the decay resitance of wood. For. Prod. J. 46: 485–490.
  29. Stamm A.J., 1946. Heat-stabilized wood. Industrial and engineering chemistry. 38: 630–634 [CrossRef].
  30. Tjeerdsma B., Boonstra M., Pizzi A., Tekeley P., and Militz H., 1998. Characterisation of thermally modified wood: molecular reasons for wood performence improvement. Holz Roh Werkst. 56: 149–153 [CrossRef].
  31. Vallet C., Alvez E., Mila I., Pollet B., Weiland J., Guyonnet R., and Lapierre C., 2001. Rectification du pin maritime : structure des lignines et propriétés du bois. In: ar.bo.lor. (Ed.), Les Cahiers scientifiques du bois, Nancy,
  32. Westermark U., Samulesson B., and Lundquist K., 1997. Homolytic cleavage of the $\beta$-ether bond in phenolic $\beta$-O-4 ether structures ant its significance in high-yield pulping and lignin analysis. Nord. Pap. Res. J. 12: 150–154 [CrossRef].
  33. Windeisen E., Strobel C., and Wegener G., 2007. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41: 523–536 [CrossRef].
  34. Windeisen E. and Wegener G., 2008. Behaviour of lignin during thermal treatments of wood. Ind. Crop. Prod. 27: 157–162 [CrossRef].
  35. Yildiz S., Gezer E., and Yildiz U.C., 2006. Mechanical and chemical behavior of spruce wood modified by heat. Build. Environ. 41: 1762–1766 [CrossRef].