Free Access
Issue
Ann. For. Sci.
Volume 66, Number 2, March 2009
Article Number 206
Number of page(s) 8
DOI https://doi.org/10.1051/forest/2008088
Published online 28 February 2009
References of  Ann. For. Sci. 66 (2009) 206
  1. Abe H., Funada R., Ohtani J., and Fukazawa K., 1997. Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees 11: 328–332 [CrossRef].
  2. Aloni R., 2001. Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J. Plant Growth Regul. 20: 22–34 [CrossRef].
  3. Anfodillo T., Rento S., Carraro V., Furlanetto L., Urbinati C., and Carrer M., 1998. Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies (L.) Karst. and Pinus cembra L. Ann. Sci. For. 55: 159–172 [CrossRef].
  4. Antonova G.F. and Shebeko V.V., 1981. Applying cresyl violet in studying wood formation, Khimiya Drevesiny 4: 102–105.
  5. Avery G.S., Burkholder P.R., and Creighton H.B., 1937. Production and distribution of growth hormone in shoots of Aesculus and Malus, and its probable role in stimulating cambial activity. Am. J. Bot. 24: 51–58 [CrossRef].
  6. Badalotti A., Anfodillo T., and Grace J., 2000. Evidence of osmoregulation in Larix decidua at Alpine treeline and comparative responses to water availability of two co-occurring evergreen species. Ann. For. Sci. 57: 623–633 [EDP Sciences] [CrossRef].
  7. Čufar K., Prislan P., de Luis M., and Gričar J., 2008. Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22: 749–758 [CrossRef].
  8. Denne M.P., 1979. Wood structure and production within the trunk and branches of Picea sitchensis in relation to canopy formation. Can. J. For. Res. 9: 406–427.
  9. Denne M.P., 1988. Definition of latewood according to Mork (1928). IAWA Bull. 10: 59–62.
  10. Denne M.P. and Wilson J.E., 1977. Some quantitative effects of indoleacet acid on the wood production and tracheid dimensions of Picea. Planta 134: 223–228 [CrossRef].
  11. Deslauriers A., Anfodillo T., Rossi S., and Carraro V., 2007. Using simple causal modelling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiol. 27: 1125–1136 [PubMed].
  12. Deslauriers A., Morin H., and Begin Y., 2003. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 33: 190–200 [CrossRef].
  13. Deslauriers A., Rossi S., Anfodillo T., and Saracino A., 2008. Cambium phenology, wood formation and temperature thresholds in two contrasting years at high altitude in Southern Italy. Tree Physiol. 28: 863–871 [PubMed].
  14. Emmingham W.H., 1977. Comparison of selected Douglas-fir seed sources of cambial and leader growth patterns in four western Oregon environments. Can. J. For. Res. 7: 154–164 [CrossRef].
  15. Fonti P., Solomonoff N., and Garcia Gonzalez I., 2007. Earlywood vessels size of Castanea sativa records temperature before their formation. New Phytol. 173: 562–570 [PubMed] [CrossRef].
  16. Forster T., Schweingruber F.H., and Denneler B., 2000. Increment puncher: a tool for extracting small cores of wood and bark from living trees. IAWA J. 21: 169–180.
  17. Giovannelli A., Deslauriers A., Fragnelli G., Scaletti L., Castro G., Rossi S., and Crivellaro A., 2007. Evaluation of drought response of two poplar clones (Populus $\times $ canadensis Mönch `I-214' and P. deltoides Marsch. `Dvina') through high resolution analysis of stem growth. J. Exp. Bot. 58: 2673–2683 [PubMed] [CrossRef].
  18. Givnish T.J., 2002. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn. 36: 703–743.
  19. Gower S.T. and Richards J.H., 1990. Larches: deciduous conifers in an evergreen world. Bioscience 40: 818–826 [CrossRef].
  20. Gričar J., Cufar K., Oven P., and Schmitt U., 2005. Differentiation of terminal latewood tracheids in silver fir trees during autumn. Ann. Bot. 95: 959–965 [PubMed] [CrossRef].
  21. Kramer P.J., 1964. The role of water in wood formation. In: Zimmermann M.H. (Ed.), The formation of wood in forest trees, Academic Press, New York, London, pp. 519–532.
  22. Lachaud S., Catesson A.M., and Bonnemain J.L., 1999. Structure and functions of the vascular cambium. C. R. Acad. Sci. III 322: 633–650 [PubMed].
  23. Ladefoged K., 1952. The periodicity of wood formation, Det Kongel Danske Vidensk Selsk Skrift Dan Biol 7: 1–98.
  24. Larson P.R., 1964. Contribution of different-aged needles to growth and wood formation of young red pines. For. Sci. 10: 224–238.
  25. Larson P.R., 1969. Wood formation and the concept of wood quality. Yale University, School of Forestry, 54 p.
  26. Little C.H.A. and Wareing P.F., 1981. Control of cambial activity and dormancy in Picea sitchensis by indol-3-ylacetic and abscisic acid. Can. J. Bot. 59: 1480–1493 [CrossRef].
  27. Minchin P.E.H. and Lacointe A., 2005. New understanding on phloem physiology and possible consequences for modelling long-distance carbon transport. New Phytol. 166: 771–779 [PubMed] [CrossRef].
  28. O'Reilly C. and Owens J.N., 1989. Shoot, needle, and cambial growth phenology and branch tracheid dimensions in provenances of lodgepole pine. Can. J. For. Res. 19: 599–605 [CrossRef].
  29. Oribe Y., Funada R., and Kubo T., 2003. Relationships between cambial activity, cell differentiation and the localisation of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees 17: 185–192.
  30. Oribe Y., Funada R., Shibagaki M., and Kubo T., 2001. Cambial reactivation in locally heated stems of the evergreen conifer Abies sachalinensis (Schmidt) Masters. Planta 212: 684–691 [PubMed] [CrossRef].
  31. Renninger H.J., Gartner B.L., and Grotta A.T., 2006. No correlation between latewood formation and leader growth in Douglas-fir saplings. IAWA J. 27: 183–191.
  32. Rensing K.H. and Owens J.N., 1994. Bud and cambial zone phenology of lateral branches from Douglas-fir (Pseudotsuga menziesii) seedlings. Can. J. For. Res. 24: 286–296 [CrossRef].
  33. Rossi S., Anfodillo T., and Menardi R., 2006a. Trephor: a new tool for sampling microcores from tree stems. IAWA J. 27: 89–97.
  34. Rossi S., Deslauriers A., and Anfodillo T., 2006b. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J. 27: 383–394.
  35. Rossi S., Deslauriers A., Anfodillo T., and Carrer M., 2008. Age-dependent xylogenesis in timberline conifers. New Phytol. 177: 199–208 [PubMed].
  36. Rossi S., Deslauriers A., Anfodillo T., Morin H., Saracino A., Motta R., and Borghetti M., 2006c. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol. 170: 301–310 [PubMed] [CrossRef].
  37. Rossi S., Simard S., Rathgeber C.B.K., Deslauriers A., and De Zan C., Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees: 23: 85–93.
  38. Savidge R.A., 1988. Auxin and ethylene regulation of diameter growth in trees. Tree Physiol. 4: 401–414 [PubMed].
  39. Savidge R.A. and Wareing P.F., 1982. Apparent auxin production and transport during winter in the nongrowing pine tree. Can. J. Bot. 60: 681–691.
  40. Schmitt U., Möller R., and Eckstein D., 2000. Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and blck locust (Robinia pseudoacacia L.) as determined by the “pinning” technique. J. Appl. Bot. 74: 10–16.
  41. Schweingruber F.H., 1996. Tree rings and environment dendroecology. Swiss Federal Institute for Forest, Snow and Landscape Research, Berne, Stuttgart, Vienna, 609 p.
  42. Seo J.-W., Eckstein D., Jalkanen R., Rickebusch S., and Schmitt U., 2008. Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiol. 28: 105–112 [PubMed].
  43. Sundberg B., Little C.H.A., Cui K., and Sandberg G., 1991. Level of endogenous indole-3-acetic acid in the stem of Pinus sylvestris in relation to the seasonal variation of cambial activity. Plant Cell Environ. 14: 241–246 [CrossRef].
  44. Sundberg B. and Uggla C., 1998. Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris. Physiol. Plant. 104: 22–29 [CrossRef].
  45. Sundberg B., Uggla C., and Tuominen H., 2000. Cambial growth and auxin gradients. In: Savidge R., Barnett J., Napier R. (Eds.), Cell and molecular biology of wood formation, BIOS Scientific Publishers Ltd, Oxford, pp. 169–183.
  46. Tang Z., Chambers J.L., Guddanti S., Yu S., and Barnett J.P., 1999. Seasonal shoot and needle growth of loblolly pine responds to thinning, fertilisation, and crown position. For. Ecol. Manage. 120: 117–130 [CrossRef].
  47. Tuominen H., Puech L., Fink S., and Sundberg B., 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol. 115: 577–585 [PubMed].
  48. Uggla C., Magel E., Moritz T., and Sundberg B., 2001. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol. 125: 2029–2039 [PubMed] [CrossRef].
  49. Uggla C., Mellerowicz E.J., and Sundberg B., 1998. Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol. 117: 113–121 [PubMed] [CrossRef].