Free Access
Issue
Ann. For. Sci.
Volume 66, Number 4, June 2009
Article Number 404
Number of page(s) 8
DOI https://doi.org/10.1051/forest/2009019
Published online 04 June 2009
References of  Ann. For. Sci. 66 (2009) 404
  1. Bergsten U., Lindeberg J., Rindby A., and Evans R., 2001. Batch measurements of wood density on intact or prepared drill cores using X-ray microdensiometry. Wood Sci. Tech. 35: 435–452 [CrossRef].
  2. Bouffier L., Charlot, C., Raffin A., Rozenberg P., and Kremer A., 2008a. Can wood density be effectively selected at early stage in maritime pine (Pinus pinaster Ait.)? Ann. For. Sci. 65: 106.
  3. Bouffier L., Rozenberg P., Raffin A., and Kremer A., 2008b. Wood density variability in successive breeding populations of maritime pine. Can. J. For. Res. 38: 2148–2158 [CrossRef].
  4. Burdon R.D., Kibblewhite R.P., Walker J.C.F., Megraw R.A., Evans R., and Cown J.C., 2004. Juvenile versus mature wood: a new concept, orthogonal corewood versus outerwood, with special reference to Pinus radiata and P. taeda. For. Sci. 50: 399–415.
  5. Cown D.J., 1992. Corewood (juvenile wood) in Pinus radiata – should we be concerned? New Zeal. J. For. Sci. 22: 87–95.
  6. Courchene C.E., Peter G.F., and Litvay J., 2006. Cellulose microfibril angle as a determinant of paper strength and hygroexpansivity in Pinus taeda L. Wood Fibre Sci. 38: 112–120.
  7. Evans R., Downes G., Menz D., and Stringer S., 1995. Rapid measurement of variation in tracheid transverse dimensions in a radiata pine tree. Appita 48: 134–138.
  8. Fries A., 1986. Volume growth and wood density of plus tree progenies of Pinus contorta in two Swedish field trials. Scand. J. For. Res. 1: 403–419 [CrossRef].
  9. Fries A. and Ericsson T., 2006. Estimating genetic parameters for wood density of Scots pine (Pinus sylvestris L.). Silvae Genet. 55: 84–92.
  10. Gaspar M.J., Louzada J.L., Silva M.E., Aguiar A., and Almeida M.H., 2008. Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster. Can. J. For. Res. 38: 1470–1477 [CrossRef].
  11. Gilmour A.R., Gogel B.J., Cullis B.R., and Thompson R., 2006. ASReml user guide release 2.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK, 342 p.
  12. Gwaze D.P., Harding K.J., Purnell R.C., and Bridgwater F.E., 2002. Optimum selection age in loblolly pine. Can. J. For. Res. 32: 1393–1399 [CrossRef].
  13. Hannrup B., Ekberg I., and Persson A., 2000. Genetic correlations among wood, growth capacity and stem traits in Pinus sylvestris. Scand. J. For. Res. 15: 161–170 [CrossRef].
  14. Hodge G.R. and Purnell R.C., 1993. Genetic parameter estimates for wood density, transition age, and radial growth in slash pine. Can. J. For. Res. 23: 1881–1891 [CrossRef].
  15. Ivkovich M., Namkoong G., and Koshy M., 2002. Genetic variation in wood properties of interior spruce. I. Growth, latewood percentage, and wood density. Can. J. For. Res. 32: 2116–2127 [CrossRef].
  16. Kempthorne O. and Curnow R.N., 1961. The partial diallel cross. Biometrics 24: 229–250 [CrossRef].
  17. Kučera B., 1994. A hypothesis relating current annual height increment to juvenile wood formation in Norway spruce. Wood Fiber Sci. 26: 152–167.
  18. Li L. and Wu H.X., 2005. Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata. Can. J. For. Res. 35: 2019–2029 [CrossRef].
  19. Lindeberg J., 2001. X-ray based dendro-analyses of wood properties. Lic. Thesis, Dept. of Silviculture, Swedish Univ. Agric. Sci., Report 50: 18 p.
  20. Louzada J.L.P.C. and Fonseca F.M.A., 2002. The heritability of wood density components in Pinus pinaster Ait. and the implications for tree breeding. Ann. For. Sci. 59: 867–873 [EDP Sciences] [CrossRef].
  21. Steffenrem A., Saranpää P., Lundqvist S.-O., and Skrøppa T., 2007. Variation in wood properties among five full-sib families of Norway spruce (Picea abies). Ann. For. Sci. 64: 799–806 [EDP Sciences] [CrossRef].
  22. Ukrainetz N.K., Kang K.-Y., Aitken S.N., Stoehr M., and Mansfield S.D., 2008. Heritability and phenotypic and genetic correlations of coastal Douglas-fir (Pseudotsuga menziesii) wood quality traits. Can. J. For. Res. 38: 1536–1546 [CrossRef].
  23. Vargas-Hernandez J. and Adams W.T., 1991. Genetic variation of wood density components in young coastal Douglas-fir: implications for tree breeding. Can J. For. Res. 21: 1801–1807 [CrossRef].
  24. Vargas-Hernandez J., Adams W.T., and Krahmer R.L., 1994. Family variation in age trends of wood density traits in young Coastal Douglas-fir. Wood Fiber Sci. 26: 229–236.
  25. Zamudi F., Rozenberg P., Baettig R., Vergara A., Yañez M., and Gantz C., 2005. Genetic variation of wood density components in a radiata pine progeny test located in the south of Chile. Ann. For. Sci. 62: 105–114 [EDP Sciences] [CrossRef].
  26. Zobel B.J. and Sprague J.R., 1998. Juvenile wood in forest trees, Springer, Berlin, Heidelberg, and New York, 300 p.