Free Access
Ann. For. Sci.
Volume 66, Number 5, July-August 2009
Article Number 513
Number of page(s) 8
Published online 09 July 2009
References of  Ann. For. Sci. 66 (2009) 513
  1. Baskerville G.L., 1972. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 2: 49–53 [CrossRef].
  2. Bartsch N. and Rapp C., 1994. Naturverjüngung von Nothofagus pumilio im Lochhieb. Verjüngungsökologische Untersuchungen im nordpatagonischen Bergwald Argentiniens. Forstarchiv 65:119–130.
  3. Bava J., 1999. Los bosques de lenga en Argentina. In: Donoso C. and Lara A. (Eds.), Silvicultura de los bosques nativos de Chile, Editorial universitaria, Santiago de Chile, pp. 273–296.
  4. Bloomberg M., Mason E., and Jarvis P., 2008. Predicting seedling biomass of radiata pine from allometric variables. New For. 36: 103–114.
  5. Caldentey J., Ibarra M., and Hernández P., 2001. Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. For. Ecol. Manage. 148: 145–157 [CrossRef].
  6. Cienciala E., Cerny M., Tatarinov F., and Apltauer J., 2006. Biomass functions applicable to Scots pine. Trees 20: 483–495 [CrossRef].
  7. Cole T.G. and Ewel J.J., 2006. Allometric equations for four valuable tropical tree species. For. Ecol. Manage. 229: 351–360 [CrossRef].
  8. Cuevas J.G., 2002. Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J. Ecol. 90, 52–60.
  9. Geudens G., Staelens J., Kint V., Goris R., and Lust N., 2004. Allometric biomass equations for Scots pine (Pinus sylvestris L.) seedlings during the first years of establishment in dense natural regeneration. Ann. For. Sci. 61: 653–659 [EDP Sciences] [CrossRef].
  10. Haase R. and Haase P., 1995. Above-ground biomass estimates for invasive trees and shrubs in the Pantanal of Mato Grosso, Brazil. For. Ecol. Manage. 73: 29–35 [CrossRef].
  11. Jackson N.A., Griffiths H., and Zeroni M., 1995. Above-ground biomass of seedling and semi-mature Sesbania sesban, a multi-purpose tree species, estimated using allometric regressions. Agrofor. Syst. 29: 103–112 [CrossRef].
  12. Klein D., Fuentes J.P., Schmidt A., Schmidt H., and Schulte A., 2008. Soil organic C as affected by silvicultural and exploitative interventions in Nothofagus pumilio forests of the Chilean Patagonia. For. Ecol. Manage. 255: 3549–3555 [CrossRef].
  13. Martínez P.G., Lencinas M.V., Peri P.L., and Arena M., 2007. Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture. For. Ecol. Manage. 243: 274–282 [CrossRef].
  14. Parresol B., 1999. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 45: 573–593.
  15. Parresol B., 2001. Additivity of nonlinear biomass equations. Can. J. For. Res. 31: 865–878 [CrossRef].
  16. Pastor J., Aber J.D., and Melillo J.M., 1984. Biomass prediction using generalized allometric regressions for some northeast tree species. For. Ecol. Manage. 7: 265–274 [CrossRef].
  17. Rebertus A.J. and Veblen T.T., 1993. Structure and tree-fall gaps dynamics of old-growth Nothofagus forest in Tierra del Fuego, Argentina. J. Veg. Sci. 4: 641–654 [CrossRef].
  18. Rosenfeld J.M., Navarro Cerrillo R.M., and Guzman A.J.R., 2006. Regeneration of Nothofagus pumilio [Poepp. Et Endl.] Krasser forests after five years of seed tree cutting. J. Environ. Manage. 78: 44–51.
  19. Schmidt H., Cruz G., Promis A., and Alvarez M., 2003. Transformación de los bosques de lenga vírgenes e intervenidos a bosques manejados. Universidad de Chile, Facultad de Ciencias Forestales, Publicaciones miscelaneas forestales No. 14, Santiago, Chile, 60 p.
  20. Schmidt A., Klein D., Leuthold F., Schmidt H., and Schulte A., 2008. Anteil der Wurzelbiomasse an der Gesamtbaumbiomasse eines Lenga (Nothofagus pumilio) Naturwaldes im chilenischen Teil Patagoniens. Forstarchiv 79: 55–59.
  21. Stewart J.L., Dunsdon A.J., Hellin J.J., and Hughes C.E., 1992. Wood biomass estimation of central american dry zone species. Tropical forestry papers No. 26, Oxford/UK, Oxford Forestry Institute.
  22. Ter-Mikaelian M. and Korzukhin M., 1997. Biomass equations for sixty-five North American tree species. For. Ecol. Manage. 97: 1–24 [CrossRef].
  23. Ter-Mikaelian M. and Parker W., 2000. Estimating biomass of white spruce seedlings with vertical photo imagery. New For. 20: 145–162.
  24. Veblen T.T., Hill R.S., and Read J., 1996. The ecology and biogeography of Nothofagus forests, Yale University Press, New Haven, 403 p.
  25. Verwijst T., 1991. Logarithmic transformation in biomass estimation procedures: violation of the linearity assumption in regression analysis. Biomass Bioenergy 1: 175–180 [CrossRef].
  26. Wagner R.G. and Ter-Mikaelian M.T., 1999. Comparison of biomass component equations for four species of northern coniferous tree seedlings. Ann. For. Sci. 56: 193–199 [EDP Sciences] [CrossRef].
  27. Weber M., 2001. Kohlenstoffspeicherung in Lenga-(Nothofagus pumilio) Primärwäldern Feuerlands und Auswirkungen ihrer Überführung in Wirtschaftswald auf den C-Haushalt, Kessel, Remagen, 119 p.
  28. Williams R.A. and Mc Clenahen J.R., 1984. Biomass prediction equation for seedlings, sprouts, and saplings of ten central hardwood species. For. Sci. 30: 523–527.
  29. Zianis D. and Mencuccini M., 2003. Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vernio Mountain, Northern Greece, and generalised equations for Fagus sp. Ann. For. Sci. 60: 439–448 [EDP Sciences] [CrossRef].