Free Access
Ann. For. Sci.
Volume 66, Number 6, September 2009
Article Number 606
Number of page(s) 9
Published online 01 September 2009
References of  Ann. For. Sci. 66 (2009) 606
  1. Baltunis B.S, Wu H.X., and Powell M.B., 2007. Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of Pinus radiata at two locations in Australia. Can. J. For. Res. 37: 2164–2174 [CrossRef].
  2. Booker R.E. and Sorensson C.T., 1999. New tools and techniques to determine mechanical wood properties. In: FIEA, wood quality symposium, Emerging technologies for evaluating wood quality for wood processing, Melbourne, 1999.
  3. Bulmer M., 1971. Effect of selection on genetic variability. Am. Nat. 105: 201–211 [CrossRef].
  4. Burdon R.D., Kibblewhite R.P., Walker J.C.F., Megraw R.A., Evans R., and Cown D.J., 2004. Juvenile versus mature wood: a new concept, othoganal to corewood versus outerwood, with special reference to Pinus radiata and P. taeda. For. Sci. 50: 399–415.
  5. Burdon R.D. and Low C.B., 1992. Genetic survey of Pinus radiata. 6: Wood properties: variation, heritability, and interrelationships with other traits. N. Z. J. For. Sci. 22: 228–245.
  6. Cave I.D. and Walker J.C.F., 1994. Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. For. Prod. J. 44: 43–48.
  7. Conner J.K., 2002. Genetic mechanisms of floral trait correlations in a natural population. Nature 420: 407–410 [PubMed] [CrossRef].
  8. Costa E Silva J., Wellendorf H., and Pereira H., 1998. Clonal variation in wood quality and growth in young Sitka spruce (Picea sitchensis (Bong) Carr.): estimation of quantitative genetic parameters and index selection for improved pulpwood. Silvae Genet. 47: 20–32.
  9. Cotterill P.P. and Dean C.A., 1990. Successful tree breeding with index selection, division of forestry and forest products, CSIRO, Australia. 80 p.
  10. Cown D.J., 1992. Juvenile wood (juvenile wood) in Pinus radiata: should we be concerned? N. Z. J. For. Sci. 22: 87–95.
  11. Cown D.J. and van Wyk L., 2004. Profitable wood processing – what does it require? Good wood! N. Z. J. For. 49: 10–14.
  12. Cown D.J., Young G.D., and Kimberley M.O., 1991. Spiral grain patterns in plantation-grown Pinus radiata. N. Z. J. For. Sci. 21: 206–216.
  13. Dean C.A., Cotterill P.P., and Cameron J.N., 1983. Genetic parameters and gains expected from multiple trait selection of radiata pine in eastern Victoria. Aust. For. Res. 13: 271–278.
  14. Dungey H.S., Matheson A.C., Kain D., and Evans R., 2006. Genetics of wood stiffness and its component traits in Pinus radiata. Can. J. For. Res. 36: 1165–1178 [CrossRef].
  15. Evans R. and Ilic J., 2001. Rapid prediction of wood stiffness from microfibril angle and density. For. Prod. 562 51: 53–57.
  16. Fylstra D., Lasdon L., Watson J., and Waren A., 1998. Design and use of microsoft excel solver. Interfaces 28: 29–55 [CrossRef].
  17. Gapare W.J., Hathorn A.D., Kain D., Matheson A.C., and Wu H.X., 2007. Inheritance of spiral grain in the juvenile core of Pinus radiata D. Don. Can. J. For. Res. 37: 116–127 [CrossRef].
  18. Gapare W.J., Ivković M., Powell M.B., McRae T.A., and Wu H.X., 2008. Genetics of shrinkage in juvenile trees of Pinus radiata D. Don from two test sites in Australia. Silvae Genet. 57: 145–151.
  19. Gapare W.J., Wu H.X., and Abarquez A., 2006. Genetic control in the time of transition from juvenile wood to mature wood in Pinus radiata D. Don. Ann. For. Sci. 63: 871–878 [CrossRef].
  20. Gilmour A.R., Gogel B.J., Cullis B.R., Welham S.J., and Thompson R., 2005. ASReml user guide release 2.0, VSN international Ltd, Hemel Hempstead HP1 1ES, UK.
  21. Hannrup B., Elberg I., and Persson A., 2000. Genetic correlations among wood, growth capacity and stem traits in Pinus sylvetris. Scand. J. For. Res. 15: 161–170 [CrossRef].
  22. Hansen J.K. and Roulund H., 1998. Spiral grain in a clonal trial with Sitka spruce. Can. J. For. Res. 28: 911–919 [CrossRef].
  23. Ilic J., 2001. Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz Roh- Werkst. 59: 169–175 [CrossRef].
  24. Ivković M., Gapare W.J., Abaquez A., Ilic J., Powell M.B., and Wu H.X., 2008. Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine. Wood Sci. Technol. 43: 237–257 [CrossRef].
  25. Ivković M., Wu H.X., McRae T.A., and Matheson A.C., 2006b. Developing breeding objective for Pinus Radiata pine structural wood production II: sensitivity analyses. Can. J. For. Res. 36: 2932–2942 [CrossRef].
  26. Ivković M., Wu H.X., McRae T.A., and Powell M.B., 2006a. Developing breeding objective for Pinus Radiata pine structural wood production I: bio economic model and economic weights. Can. J. For. Res. 36: 2920–2931 [CrossRef].
  27. Jayawickrama K.J.S., 2001. Genetic parameter estimates for radiata pine in New Zealand and New South Wales: a synthesis of results. Silvae Genet. 50: 45–53.
  28. Johnson G.R., Gartner B., and Barbara L., 2006. Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir. Tree Genet. Genomes 3: 25–33 [CrossRef].
  29. King J.N. and Hansen J., 1997. Cost-effective selection strategies in continued in genetic improvement. In: IUFRO genetics of radiata pine, FRI bulletin No. 203, Rotorua, New Zealand, pp. 192–198.
  30. Kingston R.S.T. and Risdon C.J.E., 1961. Shrinkage and density of Australian and other south-west pacific wood. CSIRO division of forest products, technical paper No. 13.
  31. Klein T.W., Defries J.C., and Finkbeiner C.T., 1973. Heritability and genetic correlations: standard error of estimates and sample size. Behav. Genet. 3: 355–364 [PubMed] [CrossRef].
  32. Kumar S., 2004. Genetic parameter estimates for wood stiffness, strength, internal checking, and resin bleeding for radiata pine. Can. J. For. Res. 34: 2601–2610 [CrossRef].
  33. Kumar S., Dungey H.S., Matheson A.C., 2006. Genetic parameters and strategies for genetic improvement of stiffness in Radiata pine. Silvae Genet. 55: 77–84.
  34. Kumar S., Jayawickrama K.J.S., Lee J., and Lausberg M., 2002. Direct and indirect measures of stiffness and strength show high heritability in a wind-pollinated radiata pine progeny test in New Zealand. Silvae Genet. 51: 256–261.
  35. Lee S.J., 1997. The genetics of growth and wood density in Sitka spruce estimated using mixed model analysis techniques. Ph.D. thesis, university of Edinburgh, 213 p.
  36. Li L. and Wu H.X., 2005. Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata. Can. J. For. Res. 35: 2019–2029 [CrossRef].
  37. Lindström H., Evans R., and Reale M., 2005. Implications of selecting tree clones with high modulus of elasticity. N. Z. J. For. Sci. 35: 50–71.
  38. Matheson A.C., Eldridge K.G., Brown A.G., and Spencer D.J., 1986. Wood volume gains from first-generation radiata pine seed orchards, CSIRO division of forest research No. 4.
  39. Matheson A.C., Gapare W.J., Illic J., and Wu H.X., 2008. Inheritance and genetic gain in wood stiffness in radiata pine assessed acoustically in young standing trees. Silvae Genet. 57: 56–64.
  40. Megraw R.A., Leaf G., and Bremer D., 1998. Longitudinal shrinkage and microfibril angle in loblolly pine. In: Butterfield, B.G. (Ed.), Microfibril angle in wood. Univ. of Canterbury press, Christchurch, New Zealand, pp. 27–61.
  41. Myszewski J.H., Bridgewater F.E., Lowe W.J., Byram T.D., and Megraw R.A., 2004., Genetic variation in the microfibril angle of loblolly pine from two test sites. South. J. App. For. 28: 196–204.
  42. Rozenberg P. and Cahalan C., 1998. Spruce and wood quality: genetic aspects (a review). Silvae Genet. 46: 270–279.
  43. Sanchez L., Yanchuk A.D., and King J.N., 2008. Gametic models for multitrait selection schemes to study variance of response and drift under adverse genetic correlations. Tree Genet. Genomes 4: 201–212 [CrossRef].
  44. Schneeberger M., Barwick S.A., Crow G.H., and Hammond K., 1992. Economic indices using breeding values predicted by BLUP. J. Anim. Breed. Genet. 107: 180–187.
  45. Sokal R.R. and Rohlf F.J., 1995. Biometry, 3th ed., W.H. Freeman, New York, 887 p.
  46. Walker J.C.F. and Butterfield B.G., 1996. The importance of microfibril angle for the processing industries. N. Z. J. For. 40: 34–40.
  47. Williams E., Matheson A.C., and Harwood C.E., 2002. Experimental design and analysis for tree improvement, 2nd ed., CSIRO publishing, 214 p.
  48. Wright P.J. and Eldridge K.G., 1985. Profitability of using seed from the Tallaganda radiata pine seed orchard. APPITA 38: 341–344.
  49. Wu H.X. and Matheson A.C., 2002. Quantitative Genetics of growth and form traits in radiata pine. Forestry and forest products technical report No. 138, 133 p.
  50. Wu H.X., Powell M.B., Yang J.L., Ivković M., and McRae T.A., 2006. Efficiency of early selection for rotation-aged wood quality traits in radiata pine. Ann. For. Sci. 64: 1–9 [CrossRef].
  51. Wu H.X., Eldridge K.G., Matheson A.C., Powell M.B., McRae T.A., Butcher T.B., and Johnson I.G., 2008a. Achievements in forest tree improvement in Australia and New Zealand. 8: Successful introduction and breeding of radiata pine in Australia. Aust. For. 70: 215–225.
  52. Wu H.X., Ivković M., Gapare W.J., Matheson A.C., Baltunis, B.S. Powell M.B., and McRae T.A., 2008b. Breeding for wood quality and profit in Pinus radiata: a review of genetic parameter estimates and implications for breeding and deployment. N. Z. J. For. Sci. 38: 56–87.
  53. Zobel B.J. and van Buijtenen J.P., 1989. Wood variation: it's causes and control, Springer-Verlag, Berlin, 363 p.