Free Access
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 205
Number of page(s) 9
Published online 01 February 2010
  • Ashok K.H.G. and Murthy H.N., 2004. Effects of sugars and amino acids on androgenesis of Cucumis sativus L. Plant Cell Tissue Organ Cult. 78, 201–208. [CrossRef] [Google Scholar]
  • Baldursson S., Nørgaard J.V., Krogstrup P. and Andersen S.B., 1993. Microspore embryogenesis in anther culture of three species of Populus, and regeneration of dihaploid plants of Populus trichocarpa. Can. J. For. Res. 23: 1812–1825 [Google Scholar]
  • Bueno M.A., Astorga R. and Manzanera J.A., 1992. Plant regeneration through somatic embryogenesis in Quercus suber. Physiol. Plant. 85: 30–34 [CrossRef] [Google Scholar]
  • Bueno M.A., Gómez A., Boscaiu M., Manzanera J.A. and Vicente O., 1997. Stress induced formation of haploid plants trough anther culture in cork-oak (Quercus suber L.). Physiol. Plant. 99: 335–341 [CrossRef] [Google Scholar]
  • Bueno M.A., Agundez M.D., Gómez A., Carrascosa M.J. and Manzanera J.A., 2000. Haploid origin of cork oak anther embryos detected by enzyme and RAPD gene markers. Int. J. Plant Sci. 161: 363–367 [CrossRef] [PubMed] [Google Scholar]
  • Bueno M.A., Gómez A., Sepúlveda F., Segui J.M., Testillano, P.S., Manzanera. J.A. and Risueño M.C., 2003. Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture. J. Plant Physiol. 160: 953–960 [CrossRef] [PubMed] [Google Scholar]
  • Chalupa A.V., 1990. Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Quercus robur L.) and linden (Tillia cordata Mill.). Plant Cell Rep. 9: 398–401 [PubMed] [Google Scholar]
  • Chee P., 1996. Plant regeneration from somatic embryos of Taxus brevifolia. Plant Cell Rep. 16: 184–187 [CrossRef] [PubMed] [Google Scholar]
  • Deutsch F., Kumlehn J., Ziegenhagen B. and Fladung M., 2004. Stable haploid poplar callus lines from immature pollen culture. Physiol. Plant. 120: 613–622 [CrossRef] [PubMed] [Google Scholar]
  • Fernández-Guijarro B., Celestino C. and Toribio M., 1995. Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber L. Plant Cell Tissue Organ Cult. 41: 99–106 [CrossRef] [Google Scholar]
  • Fridborg G. and Eriksson T., 1975. Effects of activated charcoal on growth and morphogenesis in cell cultures. Physiol. Plant. 34: 306–308 [CrossRef] [Google Scholar]
  • Fridborg G., Pedersen L., Landstrom E. and Eriksson T., 1978. The effect of activated charcoal on tissue cultures: adsorption of metabolites inhibiting morphogenesis. Physiol. Plant. 43: 104–106 [CrossRef] [Google Scholar]
  • García-Martin G., González-Benito M.E. and Manzanera J.A., 2001. Quercus suber L. somatic embryo germination and plant conversion: pretreatments and germination conditions. In Vitro Cell. Dev. Biol. Plant 37: 190–198 [Google Scholar]
  • García-Martin G., González-Benito M.E. and Manzanera J.A., 2005. Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tissue Organ Cult. 80: 171–177 [CrossRef] [Google Scholar]
  • Germanà M.A. and Chiancone B., 2003. Improvement of Citrus clementina Hort. Ex Tn. microspore-derived embryoid induction and regeneration. Plant Cell Rep. 22: 181–187 [Google Scholar]
  • Gingas V.M. and Lineberger R.D., 1989. Asexual embryogenesis and plant regeneration in Quercus. Plant Cell Tissue Organ Cult. 17: 191–203 [CrossRef] [Google Scholar]
  • Gleeson D., Lelu-Walter M.A. and Parkinson M., 2004. Influence of exogenous L-proline on embryogenic cultures of larch (Larix leptoeuropaea Dengler), sitka spruce (Picea sitchensis (Bong.) Carr.) and oak (Quercus robur L.) subjected to cold and salt stress. Ann. For. Sci. 61: 125–128 [CrossRef] [EDP Sciences] [Google Scholar]
  • Gómez A., Pintos B., Aguiriano E., Manzanera J.A. and Bueno M.A., 2001. SSR markers for Quercus suber tree identification and embryo analysis. J. Hered. 92: 292–295 [CrossRef] [PubMed] [Google Scholar]
  • González-Benito M.E., García-Martín G. and Manzanera J.A., 2002. Shoot development in Quercus suber L. somatic embryos. In Vitro Cell. Dev. Biol. Plant 38: 477–480 [Google Scholar]
  • Groll J., Gray V.M. and Mycock D.J., 2002. Development of Cassava (Manihot esculenta Crantz.) somatic embryos during culture with abscisic acid and activated charcoal. J. Plant Physiol. 159: 437–443 [CrossRef] [Google Scholar]
  • Hernández I., Celestino C. and Toribio M., 2003. Vegetative propagation of Quercus suber L. by somatic embryogenesis. I. Factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep. 21: 759–764 [Google Scholar]
  • Hernández I., Celestino C., Alegre J. and Toribio M., 2003. Vegetative propagation of Quercus suber L. by somatic embryogenesis. II. Plant regeneration from selected cork oak trees. Plant Cell Rep. 21: 765–770 [Google Scholar]
  • Höfer M., 2004. In vitro androgenesis in apple-improvement of the induction phase. Plant Cell Rep. 22: 365–370 [CrossRef] [PubMed] [Google Scholar]
  • Ishii K., Thakur R. and Jain S.M., 1999. Somatic embryogenesis and evaluation of variability in somatic seedlings of Quercus serrata by RAPD markers. In: Jain M.S., Gupta P.K. and Newton R.J. (Eds.), Somatic embryogenesis in woody plants, Vol. 4, Kluwer Academic Publishers, Dordrecht, pp. 403–414. [Google Scholar]
  • Johansson L., 1983. Effects of activated charcoal in anther cultures. Physiol. Plant. 59: 397–403 [CrossRef] [Google Scholar]
  • Kim Y.W., Youn Y., Noh E.R. and Kim J.C., 1997. Somatic embryogenesis and plant regeneration from immature embryos of five families of Quercus acutissima. Plant Cell Rep. 16: 869–873 [CrossRef] [Google Scholar]
  • Lee S.K., 1977. On the asymptotic variances of u-terms in log-linear models of multidimensional contingency tables. J. Am. Statist. Assoc. 72: 412. [CrossRef] [Google Scholar]
  • Lelu M.A. and Label P., 1994. Changes in the levels of abscisic acid and its glucose ester conjugate during maturation of hybrid larch (Larix × leptoeuropaea) somatic embryos, in relation to germination and plantlet recovery. Physiol. Plant. 92: 53–60 [CrossRef] [Google Scholar]
  • Lelu-Walter M.A. and Pâques L.E., 2009. Simplified and improved somatic embryogenesis of hybrid larches (Larix × eurolepis and Larix × marschlinsii). Perspectives for breeding. Ann. For. Sci. 66: 104. [CrossRef] [EDP Sciences] [Google Scholar]
  • Linington I.M., 1991. In vitro propagation of Dipterocarpus intricatus. Plant Cell Tissue Organ Cult. 27: 81–88 [CrossRef] [Google Scholar]
  • Loureiro J., Pinto G., Lopes T., Dolezel J. and Santos C., 2005. Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221: 815–822 [CrossRef] [PubMed] [Google Scholar]
  • Manzanera J.A., Astorga R. and Bueno M.A., 1993. Somatic embryo induction and germination in Quercus suber L. Silvae Genet. 42: 90–93 [Google Scholar]
  • Mauri P.V. and Manzanera J.A., 2003 Induction, maturation and germination of holm oak (Quercus ilex L.). Plant Cell Tissue Organ Cult. 74: 229–235. [CrossRef] [Google Scholar]
  • Mauri P.V. and Manzanera J.A., 2004. Effect of abscisic acid and stratification on somatic embryo maturation and germination of holm oak (Quercus ilex L.). In Vitro Cell. Dev. Biol. Plant 40: 495–498 [Google Scholar]
  • Merkle S.A., Parrot W.A. and Flinn B.S., 1995. Morphogenic aspects of somatic embryogenesis. In: Thorpe T.A. (Ed.), In vitro embryogenesis in plants, Kluwer Academic Publishers, Dordrecht, pp. 155–203. [Google Scholar]
  • Murashige T. and Skoog F., 1962. A revised medium for rapid growth on bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497 [Google Scholar]
  • Park Y.S., 2002. Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann. For. Sci. 59: 651–656 [CrossRef] [EDP Sciences] [Google Scholar]
  • Pintos B., Manzanera J.A. and Bueno M.A., 2005. Cytological analysis of early microspore divisions leading to gametic embryo formation in Quercus suber L. anther cultures. Acta Physiol. Plant. 27: 703–708 [CrossRef] [Google Scholar]
  • Pintos B., Manzanera J.A. and Bueno M.A., 2007. Antimitotic agents increase the production of doubled-haploid embryos from cork-oak anther culture. J. Plant Physiol. 164: 1595–1604 [CrossRef] [PubMed] [Google Scholar]
  • Rao P.S. and Pattabiraman T.N., 1990. Further studies on the mechanism of phenol-sulfuric acid reaction with furaldehyde derivatives. Anal. Biochem. 189: 178–181 [CrossRef] [PubMed] [Google Scholar]
  • Sommer H.E., Brown C.L. and Kormanik P.P., 1975. Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue culture in vitro. Bot. Gaz. 136: 196–200 [CrossRef] [Google Scholar]
  • Sutton B., 2002. Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann. For. Sci. 59: 657–661 [CrossRef] [EDP Sciences] [Google Scholar]
  • Von Aderkas P., Label P. and Lelu M.A., 2002. Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch. Tree Physiol. 22: 431–434 [PubMed] [Google Scholar]
  • Weatherhead M.A., Burdon J. and Henshaw G.G., 1978. Some effects of activated charcoal as an additive to plant tissue culture media: Part 1. Z. Pflanzenphysiol. 89: 141–147 [Google Scholar]