Open Access
Ann. For. Sci.
Volume 67, Number 4, June 2010
Article Number 402
Number of page(s) 7
Published online 11 March 2010
  • Alteyrac J., Cloutier A. and Zhang S.Y., 2006. Characterization of juvenile wood to mature wood transition age in black spruce (Picea mariana (Mill.) B.S.P.) at different stand densities and sampling heights. Wood Sci. Technol. 40: 124–138. [CrossRef] [Google Scholar]
  • Antal M. and Micko M.M., 1994. Variation and field estimation of wood quality parameters for black spruce. Holzforsch. Holzverw. 46: 70–72. [Google Scholar]
  • Bosshard H.H., 1961. The structure of spruce wood from different sites. Schweizer Zeitung für Forstwesen 112: 317–332. [Google Scholar]
  • Cown D., 2005. Understanding and managing wood quality for improving product value in New Zealand. N. Z. J. For. Sci. 35: 205–220. [Google Scholar]
  • Denne M.P., 1988. Definition of latewood according to Mork (1928). IAWA Bull. 10: 59–62. [Google Scholar]
  • Deslauriers A. and Morin H., 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19: 402–408. [CrossRef] [Google Scholar]
  • Deslauriers A., Morin H. and Begin Y., 2003. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 33: 190–200. [CrossRef] [Google Scholar]
  • Downes G.M. and Drew D.M., 2008. Climate and growth influences on wood formation and utilisation. Southern Forests 70: 155–167. [CrossRef] [Google Scholar]
  • Downes G.M., Wimmer R. and Evans R., 2002. Understanding wood formation: gains to commercial forestry through tree-ring research. Dendrochronologia 20: 37–51. [CrossRef] [Google Scholar]
  • Drew D.M. and Downes G.M., 2009. The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27: 159–172. [CrossRef] [Google Scholar]
  • Farrar J.L. and Barnfield C.R., 1969. Localized heating and cooling effects on wood development of White Spruce (Picea glauca (Moench) Voss., Extr. From Rep. Res. For. Bot. Glendon Hall Fac. For. Univ., Toronto. [Google Scholar]
  • Fayle D.C.F., 1968. Radial growth in tree roots-distribution, timing, anatomy. Faculty of Forestry, Technical Report No. 9, Toronto, 183 p. [Google Scholar]
  • Fritts H.C., Shashkin S. and Downes G.M., 1999. A simulation model of conifer ring growth and cell structure. In: Wimmer R., Vetter R.E. (Eds.), Tree-ring analysis: biological, methodological and environmental aspects, CABI Publishing, New York. [Google Scholar]
  • Gagnon R., 1989. Maintien après feu de limites abruptes entre des peuplements d’épinettes noires (Picea mariana) et des formations de feuillus intolérants (Populus tremuloides et Betula papyrifera) dans la région du Saguenay-Lac St-Jean (Québec). Nat. Can. 116: 117–124. [Google Scholar]
  • Gartner B.L., 1997. Trees have higher longitudinal growth strains in their stems than in their roots. Int. J. Plant Sci. 158: 418–423. [CrossRef] [Google Scholar]
  • Hughes M.K., 2002. Dendrochronology in climatology – the state of the art. Dendrochronologia 20: 95–116. [CrossRef] [Google Scholar]
  • Ivkovich M., Namkoong G. and Koshy M., 2002. Genetic variation in wood properties of interior spruce. II. Tracheid characteristics. Can. J. For. Res. 32: 2128–2139. [Google Scholar]
  • Krause C. and Eckstein D., 1993. Dendrochronology of roots. Dendrochronologia 11. [Google Scholar]
  • Krause C. and Morin H., 1995. Impact of spruce budworm defoliation on the number of latewood tracheids in balsam fir and black spruce. Can. J. For. Res. 25: 2029–2034. [CrossRef] [Google Scholar]
  • Krause C. and Morin H., 1999. Tree-ring patterns in stems and root systems of black spruce (Picea mariana) caused by spruce budworms. Can. J. For. Res. 29: 1583–1591. [CrossRef] [Google Scholar]
  • Mitchell M.D. and Denne M.P., 1997. Variation in density of Picea sitchensis in relation to within-tree trends in tracheid diameter and wall thickness. Forestry 70: 47–60. [CrossRef] [Google Scholar]
  • Richardson S.D. and Dinwoodie J.M., 1964. Studies on the physiology of xylem development. I. The effect of night temperature on tracheid size and wood density in conifers. J. I. Wood Sci. 6: 3–13. [Google Scholar]
  • Riedl H., 1937. Bau und Leistung des Wurzelholzes. Jahrbücher für wissenschaftliche Botanik 85: 1–75. [Google Scholar]
  • Rossi S., Anfodillo T. and Menardi R., 2006. Trephor: a new tool for sampling microcores from tree stems. IAWA J. 27: 89–97. [Google Scholar]
  • Rossi S., Deslauriers A. and Anfodillo T., 2006. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J. 27: 383–394. [Google Scholar]
  • Rossi S., Deslauriers A., Anfodillo T., Morin H., Saracino A., Motta R. and Borghetti M., 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol. 170: 301–310. [CrossRef] [PubMed] [Google Scholar]
  • Rossi S., Deslauriers A., Gričar J., Seo J.-W., Rathgeber C.B.K., Anfodillo T., Morin H., Levanic T., Oven P. and Jalkanen R., 2008. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17: 696–707. [CrossRef] [Google Scholar]
  • SAS, 2003. SAS System, version 9.1.3. SAS Institute Inc., Cary, N.C. [Google Scholar]
  • Schulman E., 1945. Root growth-ring and chronology. Tree-Ring Bull. 12: 2–5. [Google Scholar]
  • Stevens C.L., 1931. Root growth of white pine (Pinus strobus L.). Yale University School Forest Bull. 32: 1–32. [Google Scholar]
  • St-Germain J.L. and Krause C., 2008. Latitudinal variation in tree-ring and wood cell characteristics of Picea mariana across the continuous boreal forest in Quebec. Can. J. For. Res. 38: 1397–1405. [CrossRef] [Google Scholar]
  • Thibeault-Martel M., 2007. L’activité cambiale et la xylogenèse entre les tiges et les racines de l’épinette noire (Picea mariana (Mill.) BSP) et du sapin baumier (Abies balsamea (L.) Mill.). M.S. thesis, Université du Québec à Chicoutimi, 83 p. [Google Scholar]
  • Thibeault-Martel M., Krause C., Morin H. and Rossi S., 2008. Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Ann. Bot. 102: 667–674. [CrossRef] [PubMed] [Google Scholar]
  • Trendelenburg R. and Mayer-Wegelin H., 1955. Das Holz als Rohstoff [Wood as a raw material], 2nd ed. Carlttanser Verlag, München, 541 p. [Google Scholar]
  • Turcotte A., Morin H., Krause C., Deslauriers A. and Thibeault-Martel M., 2009. The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agric. For. Meteorol. 149: 1403–1409. [CrossRef] [Google Scholar]
  • Vaganov E.A., Sviderskaya I.V. and Kondratyeva E.N., 1990. Weather conditions and structure of the annual rings of tree: simulation model of tracheidogram. Lesovedenie 2: 37–45. [Google Scholar]
  • Wimmer R., Downes G.M. and Evans R., 2008. Effects of site on fibre, kraft pulp and handsheet properties of Eucalyptus globulus. Ann. For. Sci. 65: 602. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wisniewki M. and Ashoworth E.N., 1986. A comparison of seasonal ultrastructural changes in stem tissue of peach (Prunus persica) that exhibit contrasting mechanisms of cold hardiness. Bot. Gaz. 147: 407–417. [CrossRef] [Google Scholar]