Free Access
Issue
Ann. For. Sci.
Volume 67, Number 4, June 2010
Article Number 412
Number of page(s) 8
DOI https://doi.org/10.1051/forest/2009132
Published online 02 April 2010
  • Adams R.P., 2001. Identification of essential oil components by gas chromatogratography/quadropole mass spectroscopy. Allured Publishing Corporation, Illinois, 455 p. [Google Scholar]
  • Arrabal C., Cortijo M., De Simón B.F., García-Vallejo M.C., and Cadahía E., 2002. Pinus pinaster oleoresin in plus trees. Holzforschung 56: 261–266. [CrossRef] [Google Scholar]
  • Arrabal C., Cortijo M., de Simon B.F., Garcia-Vallejo M.C., and Cadahia E., 2005. Differentiation among five Spanish Pinus pinaster provenances based on its oleoresin terpenic composition. Biochem. Syst. Ecol. 33: 1007–1016. [CrossRef] [Google Scholar]
  • Chang J., and Hanover J.W., 1991. Geographic variation in the monoterpene composition of black spruce. Can. J. For. Res. 21: 1796–1800. [CrossRef] [Google Scholar]
  • Croteau R. and Johnson M.A., 1985. Biosynthesis of terpenoid wood extractives. In: Higuchi T. (Ed.), Biosynthesis and Biodegradation of wood components, Academic Press, Orlando, FL, pp. 379–439. [Google Scholar]
  • Dob T., Berramdane T., and Chelgoum C., 2005. Chemical composition of essential oil of Pinus halepensis Miller growing in Algeria. C. R. Chimie 8: 1939–1945. [CrossRef] [Google Scholar]
  • Fäldt J., Sjödin K., Persson M., Valterova I., and Borg-Karlson A.K., 2001. Correlations between selected monoterpene hydrocarbons in the xylem of six Pinus (Pinaceae) species. Chemoecology 11: 97–106. [CrossRef] [Google Scholar]
  • Gallis A.T., and Panetsos K.P., 1997. Use of cortical terpenes to discriminate Pinus brutia (Ten.), Pinus halepensis (Mill.) and their hybrids. Silvae Genet. 46: 82–88. [Google Scholar]
  • Georgoulis E.B., 1964. Cultivation of Aleppo pine, together with evergreen hardwoods and positive influence on gum yield in composite forest. For. Res. Inst., No. 11, Athens. [Google Scholar]
  • Hanover J.W., 1992. Applications of terpene analysis in forest genetics. New Forests 6: 159–178. [CrossRef] [Google Scholar]
  • Hiltunen R., and Laakso I., 1995. Gas chromatographic analysis and biogenetic relationships of monoterpene enantiomers in Scots pine and juniper needle oils. Flavour Fragr. J. 10: 203–210. [CrossRef] [Google Scholar]
  • Iconomou N., Valkanas G., and Büchi J., 1964. Composition of gum turpentines of Pinus halepensis and Pinus brutia grown in Greece. J. Chromatog. 19: 29–33. [CrossRef] [Google Scholar]
  • Kossuth S.V., McCall E., and Ledbetter J., 1988. Clone certification by use of cortical monoterpenes as biochemical markers. Silvae Genet. 37: 73–76. [Google Scholar]
  • Kovats E., 1958. Gas chromatographische Charakteriserung organischer Verbindungen. I. Retentions indices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv. Chim. Acta 41: 1915–1932. [CrossRef] [Google Scholar]
  • Lang K.J., 1994. Abies alba Mill.: Differentiation of provenances and provenance groups by the monoterpene patterns in the cortex resin of twigs. Biochem. System. Ecol. 22: 53–63. [CrossRef] [Google Scholar]
  • Latta R.G., Linhart Y.B., Snyder M.A., and Lundquist L., 2003. Patterns of variation and correlation in the monoterpene composition of xylem oleoresin within populations of ponderosa pine. Biochem. System. Ecol. 31: 451–465. [CrossRef] [Google Scholar]
  • Lewinsohn E., Savage T.J., Gijzen M., and Croteau R., 1993. Simultaneous analysis of monoterpenes and diterpenoids of conifer oleoresin. Phytochem. Anal. 4: 220–225. [CrossRef] [Google Scholar]
  • Macchioni F., Cioni P.L., Flamini G., Morelli I., Maccioni S., and Ansaldi M., 2003. Chemical composition of essential oil from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central Italy. Flavour Fragr. J. 18: 139–143. [CrossRef] [Google Scholar]
  • Mirov N.T., Zavarin E., and Snajberk K., 1966. Chemical composition of the turpentines of some eastern Mediterranean pines in relation to their classification. Phytochem. 5: 97–102. [CrossRef] [Google Scholar]
  • Moulalis D., 1981. Variation of resin yield of Pinus halepensis in Kassandra Chalkidiki. Scientific Annals of the School Agriculture and Forestry, Vol. 24 – Annex (in Greek, English abstract). [Google Scholar]
  • Muzika R.M., Pregitzer K.S., and Hanover J.W., 1989. Changes in terpene production following nitrogen fertilization of grand fir (Abies grandis Dougl.) seedlings. Oecologia 80: 485–489. [CrossRef] [PubMed] [Google Scholar]
  • Panetsos K.P., 1999. Pinus halepensis (Mill.) Enzyklopädie der Holzgewächse 18 (III-1), 10 p. [Google Scholar]
  • Papajannopoulos A.D., Song Z.Q., Liang Z.Q., and Spanos J.A., 2001. GC-MS analysis of oleorein of three Greek pine species. Holz Roh- Werkst. 59: 443–446. [CrossRef] [Google Scholar]
  • Pureswaran D.S., Gries R., and Borden J.H., 2004. Quantitative variation in monoterpenes in four species of conifers. Biochem. System. Ecol. 32: 1109–1136. [CrossRef] [Google Scholar]
  • Schiller G., and Grunwald C., 1987. Resin monoterpenes in range-wide provenance trials of Pinus halepensis Mill. in Israel. Silvae Genet. 36: 109–114. [Google Scholar]
  • Sjödin K., Persson M., Fäldt J., Ekberg I., and Borg-Karlson A.K., 2000. Occurrence and correlations among monoterpene hydrocarbons in Picea abies and Pinus sylvestris. J. Chem. Ecol. 26: 1701–1720. [CrossRef] [Google Scholar]
  • Turtola S., Manninen A.M., Rikala R., and Kainulainen P., 2003. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. J. Chem. Ecol. 29: 1981–1995. [CrossRef] [PubMed] [Google Scholar]
  • Verlet N., 1993. Commercial aspects, Volatile Oil Crops: Their Biology Biochemistry and Production. In: Hay R.K.M. and Waterman P.G. (Eds.), Longman Scientific and Technical, Essex, UK, pp. 137–174. [Google Scholar]
  • Wise M.L. and Croteau R., 1999. Monoterpene biosynthesis. In: Cane D.E. (Ed.), Comprehensive natural products chemistry: 2. Isoprenoids including carotenoids and steroids, Pergamon, Oxford, pp. 97–153. [Google Scholar]