Free Access
Issue
Ann. For. Sci.
Volume 67, Number 5, July-August 2010
Article Number 505
Number of page(s) 8
DOI https://doi.org/10.1051/forest/2010007
Published online 29 April 2010
  • Aerts R., Boot R.G.A., and van der Aart P.J.M., 1991. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87: 551–559. [CrossRef] [PubMed] [Google Scholar]
  • Alía R., Gil L., and Pardos J.A., 1995. Performance of 43 Pinus-pinaster Ait. provenances on 5 locations in central Spain. Silvae Genet 44: 75–81. [Google Scholar]
  • Alía R., Moro J., and Denis J.B., 1997. Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can. J. For. Res. 27: 1548–1559. [CrossRef] [Google Scholar]
  • Anderson J.E., Williams J., Kriedeman P.E., Austin M.P., and Farquhar G.D., 1996. Correlations between carbon isotope discrimination and climate of native habitats for diverse eucalypt taxa growing in a common garden. Aus. J. Plant Physiol. 23: 311–320. [CrossRef] [Google Scholar]
  • Aranda I., Alía R., Ortega U., Dantas A.K., and Majada J., 2010. Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations. Tree Genet. Genomes 6: 169–178. [CrossRef] [Google Scholar]
  • Bagnouls F., and Gaussen H., 1953. Saison sèche et indice xérothermique. Bull. Soc. Hist. Nat. Toulouse 88: 193–239. [Google Scholar]
  • Barton A.M., 1993. Factors controlling plant distributions: drought, competition, and fire in montane pines in Arizona. Ecol. Monogr. 63: 367–397. [CrossRef] [Google Scholar]
  • Bloom A.J., Chapin F.S., and Mooney H.A., 1985. Resource limitation in plants - an economic analogy. Ann. Rev. Ecol. Syst. 16: 363–392. [Google Scholar]
  • Bucci G., González-Martínez S.C., et al., 2007. Range-wide phylogeography and gene zones in Pinus pinaster Ait. reveales by chloroplast microsatellite markers. Mol. Ecol. 16: 2137–2153. [CrossRef] [PubMed] [Google Scholar]
  • Chambel M.R., Climent J., and Alía R., 2007. Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann. For. Sci 64: 87–97. [Google Scholar]
  • Chapin F.S., 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260. [CrossRef] [Google Scholar]
  • Cohen D., 1970. Expected efficiency of water utilization in plants under different competition and selection regimes. Isr. J. Bot. 19: 50. [Google Scholar]
  • Cordell S., Goldstein G., Müller-Dombois D., Webb D., and Vitousek P.M., 1998. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113: 188–196. [CrossRef] [PubMed] [Google Scholar]
  • Cregg B.M., and Zhang J.W., 2001. Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress. Forest. Ecol. Manage 154: 131–139. [CrossRef] [Google Scholar]
  • Danjon F., 1994. Stand features and height growth in a 36-year-old maritime pine (Pinus pinaster Ait.) provenance test. Silvae Genet. 43: 52–62. [Google Scholar]
  • Fernández M., Gil L., and Pardos J.A., 1999. Response of Pinus pinaster Ait. provenances at early age to water supply. I. Water relation parameters. Ann. For. Sci. 56: 179–187. [Google Scholar]
  • Fernández M., Gil L., and Pardos J.A., 2000. Effects of water supply on gas exchange in Pinus pinaster Ait. provenances during their first growing season. Ann. For. Sci. 57: 9–16. [CrossRef] [EDP Sciences] [Google Scholar]
  • González-Martínez S.C., Alía R., et al., 2002. Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits. Heredity 89: 199–206. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalo J., 2008. Diagnosis fitoclimática de la España peninsular actualización y análisis geoestadístico aplicadoDepartamento de Silvopascicultura, ETSI Montes, Universidad Politécnia de Madrid (UPM), Madrid, p. 521. [Google Scholar]
  • Guyon J.P., and Kremer A., 1982. Stabilité phénotypique de la croissance en hauteur et cinétique journalièr de presión de sève et de la transpiration chez le pin maritime (Pinus pinaster Ait.). Can. J. For. Res. 12: 936–946. [CrossRef] [Google Scholar]
  • IPCC, 2007. Climate change 2007. The physical science basis: working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Jones H.G., 1993. Drought tolerance and water-use efficiency. In: Smith J.A.C. and Griffiths H. (Eds.), Water Deficits: Plant Responses from Cell to Community, BIOS Scientific Publishers, Oxford, UK, pp. 193–203. [Google Scholar]
  • Körner C., 2003. Alpine Plant Life - Functional plant ecology of high mountain ecosystems, Springer-Verlag, Berlin, 344 p. [Google Scholar]
  • Leck M.A., Parker V.T., and Simpson R.L., 2008. Seedling ecology and evolution, Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Ludlow M.M., 1989. Strategies of response to water stress. In: Kreeb K.H., Richter H., and Hinckley T.M. (Eds.), Structural and functional responses to environmental stresses, SPB Academic Publishing, The Hague, pp. 269–281. [Google Scholar]
  • Müller I., Schmid B., and Weiner J., 2000. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect. Plant Ecol. Evol. Syst. 3: 115–127. [CrossRef] [Google Scholar]
  • Nguyen-Queyrens A., and Bouchet-Lannat F., 2003. Osmotic adjustment in three-year-old seedlings of five provenances of maritime pine (Pinus pinaster) in response to drought. Tree Physiol. 23: 397–404. [PubMed] [Google Scholar]
  • Nguyen-Queyrens A., Ferhi A., Lousteau D., and Guehl J.M., 1998. Within-ring delta C-13 spatial variability and interannual variations in wood cellulose of two contrasting provenances of Pinus pinaster. Can. J. For. Res. 28: 766–773. [CrossRef] [Google Scholar]
  • Nguyen A., and Lamant A., 1989. Variation in growth and osmotic regulation of roots of water-stressed maritime pine (Pinus pinaster Ait.) provenances. Tree Physiol. 5: 123–133. [PubMed] [Google Scholar]
  • Pigott C.D., and Pigott S., 1993. Water as a determinant of the distribution of trees at the boundary of the Mediterranean zone. J. Ecol. 81: 557–566. [CrossRef] [Google Scholar]
  • Poorter H., and Nagel O., 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aus. J. Plant Physiol. 27: 595–607. [Google Scholar]
  • Poorter L., 2001. Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funt. Ecol. 15: 113–123. [CrossRef] [Google Scholar]
  • Popma J., and Bongers F., 1988. The effect of canopy gaps on growth and morphology of seedlings of rain forest species. Oecologia 5: 625–632. [CrossRef] [Google Scholar]
  • Richards R.A., and Townley-Smith T.F., 1987. Variation in leaf area development and its effect on water use, yield and harvest index of droughted wheat. Aust. J. Agric. Res. 38: 983–992. [CrossRef] [Google Scholar]
  • Sáenz-Romero C., Guzmán-Reyna R.R., and Rehfeldt G.E., 2006. Altitudinal genetic variation among Pinus oocarpa populations in Michoacán, Mexico. Implications for seed zoning, conservation, tree breeding and global warming. For. Ecol. Manage. 229: 340–350. [CrossRef] [Google Scholar]
  • Sánchez-Gómez D., Zavala M.A., and Valladares F., 2008. Functional traits and plasticity linked to seedlings’ performance under shade and drought in Mediterranean woody species. Ann. For. Sci. 65: 311. [CrossRef] [EDP Sciences] [Google Scholar]
  • Schlichting C.D., 1986. The evolution of phenotypic plasticity in plants. Ann. Rev. Ecol. Syst. 17: 667–693. [CrossRef] [Google Scholar]
  • Shugart H.H., 1984. A theory of forest dynamics: the ecological implications of forest succession models, Springer-Verlarg, New York, 278 p. [Google Scholar]
  • Tilman D., 1988. Plant strategies and the dynamics and structure of plant communities, Princeton University Press, Princeton, New Jersey, USA. [Google Scholar]
  • Visscher P.M., 1998. On the sampling variance of intraclass correlations and genetic correlations. Genetics 149(1605-1614). [PubMed] [Google Scholar]
  • Wahid N., González-Martínez S.C., El Hadrami I., and Boulli A., 2006. Variation of morphological traits in natural populations of maritime pine (Pinus pinaster Ait.) in Morroco. Ann. For. Sci. 63: 83–92. [CrossRef] [EDP Sciences] [Google Scholar]
  • White T.L., Adams W.T., and Neale D.B., 2007. Forest Genetics, CAB International, Trownbridge, UK, 682 p. [Google Scholar]
  • Wilson J.B., 1988. A review of evidence on the control of shoot:root ratio, in relation to models. Ann. Bot. 61: 433–449. [Google Scholar]
  • Zhang J.W., Feng Z., Gregg B.M., and Schuman C.M., 1997. Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance. Tree Physiol. 17: 461–466. [PubMed] [Google Scholar]
  • Zhang J.W., Marshall J.D., and Fins L., 1996. Correlated population differences in dry matter accumulation, allocation, and water-use efficiency in three sympatric conifer species. For. Sci. 42: 242–249. [Google Scholar]