Free Access
Issue |
Ann. For. Sci.
Volume 67, Number 6, September 2010
|
|
---|---|---|
Article Number | 609 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/forest/2010022 | |
Published online | 08 July 2010 |
- Bauer G.A., Berntson G.M. and Bazzaz F.A., 2001. Regenerating temperate forests under elevated CO2 and nitrogen deposition: comparing biochemical and stomatal limitation of photosynthesis. New Phytol. 152: 249–266. [CrossRef] [Google Scholar]
- Berveiller D. and Damesin C., 2008. Carbon assimilation by tree stems: potential involvement of phosphoenolpyruvate carboxylase. Trees-Struct. Func. 22: 149–157. [CrossRef] [Google Scholar]
- Berveiller D., Kierzkowski D. and Damesin C., 2007. Interspecific variability of stem photosynthesis among tree species. Tree Physiol. 27: 53–61. [PubMed] [Google Scholar]
- Berveiller D., Vidal J., Degrouard J., Ambard-Bretteville F., Jaillard D. and Damesin C., 2007. Tree stem phosphoenolpyruvate carboxylase (PEPC): lack of biochemical and localization evidence for a C4-like photosynthesis system. New Phytol. 176: 775–781. [CrossRef] [PubMed] [Google Scholar]
- Bradford M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principe of protein-dye binding. Anal. Biochem. 72: 248–254. [CrossRef] [Google Scholar]
- Cernusak L.A. and Marshall J.D., 2000. Photosynthetic refixation in branches of Western Pine. Funct. Ecol. 14: 300–311. [CrossRef] [Google Scholar]
- Damesin C., 2003. Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance. New Phytol. 158: 465–475. [CrossRef] [Google Scholar]
- Damesin C., Ceschia E., Le Goff N., Ottorini J.-M. and Dufrêne E., 2002. Stem and branch respiration of beech: from tree measurements to estimations at the stand level. New Phytol. 158: 159–172. [CrossRef] [Google Scholar]
- Evans J.R., 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19. [CrossRef] [PubMed] [Google Scholar]
- Field C. and Mooney H.A., The photosynthesis-nitrogen relationship in wild plants, 1986. In: Givnish T.J. (Ed.), On the economy of plant form and function, Cambridge University Press, Cambridge, pp. 25–55. [Google Scholar]
- Gessler A., Schneider S., Von Sengbusch D., Weber P., Hanemann U., Huber C., Rothe A., Kreutzer K. and Rennenberg H., 1998. Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol. 138: 275–285. [CrossRef] [Google Scholar]
- Glass A.D.M. and Siddiqi M.Y., Nitrogen absorption by plant roots, 1995. In: Strivastava H.S. and Singh R.P. (Eds.), Nitrogen Nutrition in Higher Plants, Associated Publishing Co., New Delhi, pp. 21–56. [Google Scholar]
- Gomez L. and Faurobert M., 2002. Contribution of vegetative storage proteins to seasonal nitrogen variations in the young shoots of peach trees (Prunus persica L. Batsch). J. Exp. Bot. 53: 2431–2439. [CrossRef] [PubMed] [Google Scholar]
- Gower S.T., Reich P.B. and Son Y., 1993. Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiol. 12: 327–345. [PubMed] [Google Scholar]
- Granier A., Ceschia E., Damesin C., Dufrene E., Epron D., Gross P., Lebaube S., Le Dantec V., Le Goff N., Lemoine D., Lucot E., Ottorini J.-M., Pontailler J.-Y. and Saugier B., 2000. The carbon balance of a young Beech forest. Funct. Ecol. 14: 312–325. [CrossRef] [Google Scholar]
- Hikosaka K., Hanba Y.T., Hirose T. and Terashima I., 1998. Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species. Funct. Ecol. 12: 896–905. [CrossRef] [Google Scholar]
- Huppe H.C. and Turpin D.H., 1994. Integration of Carbon and Nitrogen Metabolism in Plant and Algal Cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 577–607. [CrossRef] [Google Scholar]
- Kharouk V.I., Middleton E.M., Spencer S.L., Rock B.N. and Williams D.L., 1995. Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem. Water Air Soil Pollut. 82: 483–497. [CrossRef] [Google Scholar]
-
Kreuzwieser J., Herschbach C., Stulen I., Wiersema P., Vaalburg W. and Rennenberg H., 1997. Interactions of
+ and L-glutamate with
transport processes of non-mycorrhizal Fagus sylvatica roots. J. Exp. Bot. 48: 1431–1438. [CrossRef] [Google Scholar]
- Lee R.B. and Drew M.C., 1989. Rapid, reversible inhibition of nitrate influx in barley by ammonium. J. Exp. Bot. 40: 741–752. [CrossRef] [Google Scholar]
- Li B., Zhang X.Q. and Chollet R., 1996. Phosphoenolpyruvate carboxylase kinase in tobacco leaves is activated by light in a similar but not identical way as in maize. Plant Physiol. 111: 497–505. [PubMed] [Google Scholar]
- Makino A., Nakano H. and Mae T., 1994. Responses of Ribulose-1,5-Bisphosphate Carboxylase, Cytochrome-F, and Sucrose synthesis enzymes in rice leaves to leaf Nitrogen and their relationships to photosynthesis. Plant Physiol. 105: 173–179. [PubMed] [Google Scholar]
- Manetas Y., 2004. Probing corticular photosynthesis through in vivo chlorophyll fluorescence measurements: evidence that high internal CO2 levels suppress electron flow and increase the risk of photoinhibition. Physiol. Plant. 120: 509–517. [CrossRef] [PubMed] [Google Scholar]
- Martin F. and Plassard C., Assimilation de l’azote par les symbioses ectomycorhiziennes, 1997. In: Morot-Gaudry J.-F. (Ed.), Assimilation de l’azote des chez les plantes, INRA, Paris, pp. 179–193. [Google Scholar]
- McCree K.J., An equation for the rate of respiration of white clover plants grown under controlled conditions, Proceedings of the technical meeting IBP, Centre for Agricultural Publishing and Documentation, Wageningen, Trebon (CSK), 1969, pp. 221–229. [Google Scholar]
- Millard P., 1994. Measurements of the remobilization of nitrogen for spring leaf growth of trees under field conditions. Tree Physiol. 14: 1049–1054. [PubMed] [Google Scholar]
- Millard P. and Proe M.F., 1992. Storage and internal cycling of N in relation to seasonal growth of sitka spruce. Tree Physiol. 10: 33–43. [PubMed] [Google Scholar]
- Pate J.S., 1973. Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biology and Biochemistry 5: 109–119. [CrossRef] [Google Scholar]
- Pearson L.C. and Lawrence D.B., 1958. Photosynthesis in aspen bark. Am. J. Bot. 45: 383–327. [CrossRef] [Google Scholar]
- Pfanz H., Aschan G., Langenfeld-Heyser R., Wittmann C. and Loose M., 2002. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89: 147–162. [CrossRef] [PubMed] [Google Scholar]
- Pilarski J., 1989. Photosynthesis in shoots and leaves of lilac (Syringae vulgaris L.). Bull. Pol. Acad. Sci. Biol. Sci. 37: 261–269. [Google Scholar]
- Poorter H. and Evans J.R., 1998. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116: 26–37. [CrossRef] [PubMed] [Google Scholar]
- Rennenberg H., Schneider S. and Weber P., 1996. Analysis of uptake and allocation of nitrogen and sulphur compounds by trees in the field. J. Exp. Bot. 47: 1491–1498. [CrossRef] [Google Scholar]
- Ripullone F., Grassi G., Lauteri M. and Borghetti M., 2003. Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus x euroamericana in a mini-stand experiment. Tree Physiol. 23: 137–144. [PubMed] [Google Scholar]
- Rowland L.J. and Arora R., 1997. Proteins related to endodormancy (rest) in woody perennials. Plant Sci. 126: 119–144. [CrossRef] [Google Scholar]
- Ryan M.G., 1991. Effects of climate on change on plant respiration. Ecol. Appl. 1: 157–167. [CrossRef] [PubMed] [Google Scholar]
- Sage R.F., Pearcy R.W. and Seemann J.R., 1987. The nitrogen use efficiency of C3 and C4 Plants: 3. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol. 85: 355–359. [CrossRef] [PubMed] [Google Scholar]
- Schaedle M. and Brayman A., 1986. Ribulose-1,5-bisphosphate carboxylase activity of Populus tremuloides Michx. bark tissues. Tree Physiol. 1: 53–56. [PubMed] [Google Scholar]
- Stadler J., Gebauer G. and Schulze E.D., 1993. The influence of ammonium on nitrate uptake and assimilation in 2-year-old ash and oak trees - a tracer study with 15N. Isotopenpraxis 29: 85–92. [Google Scholar]
- Stepien V., Sauter J.J. and Martin F., 1994. Vegetative storage proteins in woody-plants. Plant Physiol. Biochem. 32: 185–192. [Google Scholar]
- Tietz S. and Wild A., 1991. Investigations on the phosphoenolpyruvate carboxylase activity of spruce needles relative to the occurrence of novel forest decline. J. Plant Physiol. 137: 327–331. [Google Scholar]
- Tischner R., 2000. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23: 1005–1024. [CrossRef] [Google Scholar]
- Uedan K. and Sugiyama T., 1976. Purification and characterization of phosphoenolpyruvate carboxylase from maize leaves. Plant Physiol. 57: 906–910. [CrossRef] [PubMed] [Google Scholar]
- Volk R., Chaillou S., Mariotti A. and Morotgaudry J.F., 1992. Beneficial effects of concurrent ammonium and nitrate nutrition on the growth of Phaseolus vulgaris – a N15 study. Plant Physiol. Biochem. 30: 487–493. [Google Scholar]
- Wiebe H.H., 1975. Photosynthesis in wood. Physiol Plant 332: 45–46. [Google Scholar]
- Wittmann C., Aschan G. and Pfanz H., 2001. Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic Appl. Biol. 2: 145–154. [CrossRef] [Google Scholar]
- Wittmann C. and Pfanz H., 2007. Temperature dependency of bark photosynthesis in beech (Fagus sylvatica L.) and birch (Betula pendula Roth.) trees. J. Exp. Bot. 58: 4293–4306. [CrossRef] [PubMed] [Google Scholar]
- Wittmann C., Pfanz H., Loreto F., Centritto M., Pietrini F. and Alessio G., 2006. Stem CO2 release under illumination: corticular photosynthesis, photorespiration or inhibition of mitochondrial respiration? Plant Cell Environ. 29: 1149–1158. [CrossRef] [PubMed] [Google Scholar]