Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Constitutive Overexpression of a Conifer WOX2 Homolog Affects Somatic Embryo Development in Pinus pinaster and Promotes Somatic Embryogenesis and Organogenesis in Arabidopsis Seedlings

Seyedeh Batool Hassani, Jean-François Trontin, Juliane Raschke, Kurt Zoglauer and Andrea Rupps
Frontiers in Plant Science 13 (2022)
https://doi.org/10.3389/fpls.2022.838421

Conifer Biotechnology: An Overview

Sonia María Rodríguez, Ricardo Javier Ordás and José Manuel Alvarez
Forests 13 (7) 1061 (2022)
https://doi.org/10.3390/f13071061

Overexpression of TcCHS Increases Pyrethrin Content When Using a Genotype-Independent Transformation System in Pyrethrum (Tanacetum cinerariifolium)

Jiawen Li, Zhizhuo Xu, Tuo Zeng, Li Zhou, Jinjin Li, Hao Hu, Jing Luo and Caiyun Wang
Plants 11 (12) 1575 (2022)
https://doi.org/10.3390/plants11121575

Novel Functional Analysis for Pathogenic Proteins of Bursaphelenchus xylophilus in Pine Seed Embryos Using a Virus Vector

Haru Kirino, Ken-ichi Konagaya and Ryoji Shinya
Frontiers in Plant Science 13 (2022)
https://doi.org/10.3389/fpls.2022.872076

Lieven Sterck, Nuria de María, Rafael A. Cañas, Marina de Miguel, Pedro Perdiguero, Annie Raffin, Katharina B. Budde, Miriam López-Hinojosa, Francisco R. Cantón, Andreia S. Rodrigues, Marian Morcillo, Agathe Hurel, María Dolores Vélez, Fernando N. de la Torre, Inês Modesto, Lorenzo Federico Manjarrez, María Belén Pascual, Ana Alves, Isabel Mendoza-Poudereux, Marta Callejas Díaz, Alberto Pizarro, Jorge El-Azaz, Laura Hernández-Escribano, María Ángeles Guevara, Juan Majada, et al.
67 (2022)
https://doi.org/10.1007/978-3-030-93390-6_5

Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter

Jia-Wen Li, Tuo Zeng, Zhi-Zhuo Xu, Jin-Jin Li, Hao Hu, Qin Yu, Li Zhou, Ri-Ru Zheng, Jing Luo and Cai-Yun Wang
Plant Methods 18 (1) (2022)
https://doi.org/10.1186/s13007-022-00863-5

Transcriptional analysis of arogenate dehydratase genes identifies a link between phenylalanine biosynthesis and lignin biosynthesis

Francisco M Cánovas, Concepción Ávila, Jean-François Trontin, et al.
Journal of Experimental Botany 71 (10) 3080 (2020)
https://doi.org/10.1093/jxb/eraa099

A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers

J.M. Bonga
Canadian Journal of Forest Research 45 (4) 379 (2015)
https://doi.org/10.1139/cjfr-2014-0360

Early molecular events involved inPinus pinasterAit. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses

Alexandre Morel, Caroline Teyssier, Jean-François Trontin, et al.
Physiologia Plantarum 152 (1) 184 (2014)
https://doi.org/10.1111/ppl.12158

Stable Agrobacterium‐Mediated Transformation of Maritime Pine Based on Kanamycin Selection

José M. Alvarez, Ricardo J. Ordás, S. Tan and D. Ustek
The Scientific World Journal 2013 (1) (2013)
https://doi.org/10.1155/2013/681792

Somatic embryogenesis from different tissues of Spanish populations of maritime pine

A. Humánez, M. Blasco, C. Brisa, J. Segura and I. Arrillaga
Plant Cell, Tissue and Organ Culture (PCTOC) 111 (3) 373 (2012)
https://doi.org/10.1007/s11240-012-0203-0

An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons

J. M. Álvarez, J. Majada and R. J. Ordás
Forestry: An International Journal of Forest Research 82 (2) 175 (2009)
https://doi.org/10.1093/forestry/cpn052

Agrobacterium-mediated transformation of Dioscorea zingiberensis Wright, an important pharmaceutical crop

Qi Zhu, Fengtao Wu, Feng Ding, et al.
Plant Cell, Tissue and Organ Culture (PCTOC) 96 (3) 317 (2009)
https://doi.org/10.1007/s11240-008-9489-3

An Agrobacterium-mediated system for gene transfer in Pinus patula

S.A. Nigro, N.P. Makunga, N.B. Jones and J. Van Staden
South African Journal of Botany 74 (1) 144 (2008)
https://doi.org/10.1016/j.sajb.2007.08.009

Transformação genética: estratégias e aplicações para o melhoramento genético de espécies florestais

Laudete Maria Sartoretto, Cleber Witt Saldanha and Maisa Pimentel Martins Corder
Ciência Rural 38 (3) 861 (2008)
https://doi.org/10.1590/S0103-84782008000300046

Susceptibility of embryogenic and organogenic tissues of maritime pine (Pinus pinaster) to antibiotics used in Agrobacterium-mediated genetic transformation

S. Tereso, C. Miguel, J. Maroco and M. M. Oliveira
Plant Cell, Tissue and Organ Culture 87 (1) 33 (2006)
https://doi.org/10.1007/s11240-006-9130-2

Stable Agrobacterium-mediated transformation of embryogenic tissues from Pinus pinaster Portuguese genotypes

Susana Tereso, Célia Miguel, Kurt Zoglauer, Carolina Valle-Piquera and M. Margarida Oliveira
Plant Growth Regulation (2006)
https://doi.org/10.1007/s10725-006-0006-6

Stable Agrobacterium-mediated transformation of embryogenic tissues from Pinus pinaster Portuguese genotypes

Susana Tereso, Célia Miguel, Kurt Zoglauer, Carolina Valle-Piquera and M. Margarida Oliveira
Plant Growth Regulation 50 (1) 57 (2006)
https://doi.org/10.1007/s10725-006-9126-2

Forest biotechnology: Innovative methods, emerging opportunities

Narender S. Nehra, Michael R. Becwar, William H. Rottmann, et al.
In Vitro Cellular & Developmental Biology - Plant 41 (6) 701 (2005)
https://doi.org/10.1079/IVP2005691

Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures

J. A. Charity, L. Holland, L. J. Grace and C. Walter
Plant Cell Reports 23 (9) 606 (2005)
https://doi.org/10.1007/s00299-004-0851-6

Persistence ofAgrobacterium tumefaciensin transformed conifers

Julia A. Charity and Krystyna Klimaszewska
Environmental Biosafety Research 4 (3) 167 (2005)
https://doi.org/10.1051/ebr:2006001

Polymerase chain reaction analysis of transgenic plants contaminated byAgrobacterium

Vikrant Nain, Rajani Jaiswal, Monika Dalal, Bandarupalli Ramesh and Polumetla A. Kumar
Plant Molecular Biology Reporter 23 (1) 59 (2005)
https://doi.org/10.1007/BF02772647

A biolistic approach towards producing transgenic Pinus patula embryonal suspensor masses

Sara A. Nigro, Nokwanda P. Makunga, Nicoletta B. Jones and Johannes van Staden
Plant Growth Regulation 44 (3) 187 (2004)
https://doi.org/10.1007/s10725-004-4630-8

Agrobacterium-mediated transformation of European chestnut embryogenic cultures

E. Corredoira, D. Montenegro, M. C. San-Jos�, A. M. Vieitez and A. Ballester
Plant Cell Reports 23 (5) 311 (2004)
https://doi.org/10.1007/s00299-004-0804-0