Free access
Issue
Ann. For. Sci.
Volume 62, Number 2, March 2005
Page(s) 143 - 152
DOI http://dx.doi.org/10.1051/forest:2005006
References of Ann. For. Sci. 62 143-152
  1. Álvarez González J.G., Ruiz González A.D., Rodríguez Soalleiro R.J., Barrio Anta M., Development of ecoregion-based site index models for even-aged stands of Pinus pinaster Ait. in Galicia (north-western Spain), Ann. For. Sci. 62 (2005) 117-129.
  2. Bailey R.L., Clutter J.L., Base-age invariant polymorphic site curves, For. Sci. 20 (1974) 155-159.
  3. Bertalanffy L.v., Problems of organic growth, Nature 163 (1949) 156-158.
  4. Bertalanffy L.v., Quantitative laws in metabolism and growth, Q. Rev. Biol. 32 (1957) 217-231 [CrossRef].
  5. Borders T.H., Bailey R.L., Ware K.D., Slash pine site index from a polymorphic model by joining (splining) nonpolynomial segments with an algebraic difference method, For. Sci. 30 (1984) 411-423.
  6. Bravo F., Díaz-Balteiro L., Evaluation of new silvicultural alternatives for Scots pine stands in northern Spain, Ann. For. Sci. 61 (2004) 163-169 [EDP Sciences] [CrossRef].
  7. Bravo F., Montero G., Site index estimation in Scots pine (Pinus sylvestris L.) stands in the High Ebro Basin (northern Spain) using soil attributes, Forestry 74 (2001) 395-406 [CrossRef].
  8. Bravo F., Montero G., High-grading effects on Scots pine volume and basal area in pure stands in northern Spain, Ann. For. Sci. 60 (2003) 11-18 [EDP Sciences] [CrossRef].
  9. Burnham K.P., Anderson D.R., Model selection and inference. A practical information-theoretic approach, Springer-Verlag, New York, 1998.
  10. Calama R., Cañadas N., Montero G., Inter-regional variability in site index models for even-aged stands of stone pine (Pinus pinea L.) in Spain, Ann. For. Sci. 60 (2003) 259-269 [EDP Sciences] [CrossRef].
  11. Cao Q.V., Estimating coefficients of base-age invariant site index equations, Can. J. For. Res. 23 (1993) 2343-2347.
  12. Cao Q.V., Baldwin V.C., Lohrey R.E., Site index curves for direct-seeded loblolly and longleaf pines in Lousinia, North J. Appl. For. 21 (1997) 134-138.
  13. Carmean W.H., Site index curves for upland oaks in the central states, For. Sci. 18 (1972) 109-120.
  14. Carmean W.H., Forest site quality evaluation in the United States, Adv. Agron. 27 (1975) 209-267.
  15. Cieszewski C.J., Comparing fixed-and variable-base-age site equations having single versus multiple asymptotes, For. Sci. 48 (2002) 7-23.
  16. Cieszewski C.J., Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3 = (axm)/(c + xm-1), a simplified mixed-model and scant subalpine fir data, For. Sci. 49 (2003) 539-554.
  17. Cieszewski C.J., Bailey R.L., The method for deriving theory-based base-age invariant polymorphic site equations with variable asymptotes and other inventory projection models, University of Georgia, PMRC Technical Report 1999-4.
  18. Cieszewski C.J., Bailey R.L., Generalized algebraic difference approach: theory based derivation of dynamic equations with polymorphism and variable asymptotes, For. Sci. 46 (2000) 116-126.
  19. Cieszewski C.J., Bella I.E., Polymorphic height and site index curves for lodgepole pine in Alberta, Can. J. For. Res. 19 (1989) 1151-1160.
  20. Clutter J.L., Fortson J.C., Pienaar L.V., Brister G.H., Bailey R.L., Timber management: a quantitative approach, Krieger Publishing Company, New York, 1983, Reprint ed. 1992.
  21. Davis L.S., Johnson K.N., Bettinger P.S., Howard T.E., Forest management: to sustain ecological, economic, and social values, McGraw-Hill, New York, 2001.
  22. Dyer M.E., Bailey R.L., A test of six methods for estimating true heights from stem analysis data, For. Sci. 33 (1987) 3-13.
  23. Elfving B., Kiviste A., Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden, For. Ecol. Manage. 98 (1997) 125-134.
  24. García O., A stochastic differential equation model for the height growth of forest stands, Biometrics 39 (1983) 1059-1072.
  25. García Abejón J.L., Tablas de producción de densidad variable para Pinus sylvestris en el Sistema Ibérico, Comunicaciones INIA Serie: Recursos Naturales, nº 10, 1981.
  26. García Abejón J.L., Gómez Loranca J.A., Tablas de producción de densidad variable para Pinus sylvestris en el sistema Central, Comunicaciones INIA Serie: Recursos Naturales, nº 29, 1984.
  27. García Abejón J.L., Tella G., Tablas de producción de densidad variable para Pinus sylvestris L. en el Sistema Pirenaico, Comunicaciones INIA Serie: Recursos Naturales, nº 43, 1986.
  28. Goelz J.C.G., Burk T.E., Development of a well-behaved site index equation: jack pine in north central Ontario, Can. J. For. Res. 22 (1992) 776-784.
  29. Goelz J.C.G., Burk T.E., Measurement error causes bias in site index equations, Can. J. For. Res. 26 (1996) 1586-1593.
  30. Gregoire T.G., Schabenberger O., Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements, Can. J. For. Res. 25 (1995) 137-156.
  31. Huang S., Development of a subregion-based compatible height-site index-age model for black spruce in Alberta, Alberta Land and Forest Service, For. Manag. Res. Note No. 5, Pub. No. T/352, Edmonton, Alberta, 1997.
  32. Huang S., Development of compatible height and site index models for young and mature stands within an ecosystem-based management framework, in: Amaro A., Tomé T. (Eds.), Empirical and process based models for forest tree and stand growth simulation, Edicões Salamandra, 1999, pp. 61-98.
  33. Huang S., Price D., Titus S.J., Development of ecoregion-based height-diameter models for white spruce in boreal forests, For. Ecol. Manage. 129 (2000) 125-141.
  34. Huang S., Yang Y., Wang Y., A critical look at procedures for validating growth and yield models, in: Amaro A., Reed D., Soares P. (Eds.), Modelling forest systems, CAB International, Wallingford, Oxfordshire, UK, 2003, pp. 271-293.
  35. Kiviste A.K., Álvarez González J.G., Rojo A., Ruiz A.D., Funciones de crecimiento de aplicación en el ámbito forestal, Monografía INIA: Forestal nº 4, Ministerio de Ciencia y Tecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, 2002.
  36. Lundqvist B., On height growth in cultivated stands of pine and spruce in Northern Sweden, Medd. Fran Statens Skogforsk. 47 (1957) 1-64.
  37. McDill M.E., Amateis R.L., Measuring forest site quality using the parameters of a dimensionally compatible height growth function, For. Sci. 38 (1992) 409-429.
  38. Monserud R.A., Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type, For. Sci. 30 (1984) 943-965.
  39. Neter J., Kutner M.H., Nachtsheim C.J., Wasserman W., Applied linear statistical models, 4th ed., McGraw-Hill, New York, 1996.
  40. Newberry J.D., A note on Carmean's estimate of height from stem analysis data, For. Sci. 37 (1991) 368-369.
  41. Ortega A., Modelos de evolución de masas de Pinus sylvestris L., Tesis doctoral, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, 1989 (unpublished).
  42. Palahí M., Pukkala T., Optimising the management of Scots pine (Pinus sylvestris L.) stands in Spain based on individual-tree models, Ann. For. Sci. 60 (2003) 105-114 [EDP Sciences] [CrossRef].
  43. Palahí M., Pukkala T., Miina J., Montero G., Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain, Ann. For. Sci. 60 (2003) 1-10 [EDP Sciences] [CrossRef].
  44. Palahí M., Tomé M., Pukkala T., Trasobares A., Montero G., Site index model for Pinus sylvestris in north-east Spain, For. Ecol. Manage. 187 (2004) 35-47.
  45. Parresol B.R., Vissage J.S., White pine site index for the southern forest survey, USDA For. Serv. Res. Pap. SRS-10, 1998.
  46. Peschel W., Die mathematischen Methoden zur Herteitung der Wachstums-gesetze von Baum und Bestand und die Ergebnisse ihrer Anwendung, Tharandter Forstliches Jarbuch 89 (1938) 169-274.
  47. Pita P.A., La calidad de la estación en las masas de Pinus sylvestris de la Península Ibérica, Anales del Instituto Forestal de Investigaciones y Experiencias 9 (1964) 5-28.
  48. Ramírez-Maldonado H., Bailey R.L., Borders B.E., Some implications of the algebraic difference approach for developing growth models, in: Ek A.R., Shifley S., Burk T.E. (Eds.), Proceedings of IUFRO conference on forest growth modelling and prediction, USDA For. Serv. Gen. Tech. Rep. NC-120, 1988, pp. 731-738.
  49. Reynolds M.R. Jr., Estimating the error in model predictions, For. Sci. 30 (1984) 454-469.
  50. Richards F.J., A flexible growth function for empirical use, J. Exp. Bot. 10 (1959) 290-300.
  51. Rojo A., Montero G., El pino silvestre en la Sierra de Guadarrama, Ministerio de Agricultura, Pesca y Alimentación, Madrid, 1996.
  52. SAS Institute Inc., SAS/ETS User's Guide, Version 8, Cary, North Carolina, 2000.
  53. Sloboda B., Zur Darstellung von Wachstumprozessen mit Hilfe von Differentialgleichungen erster Ordung. Mitteillungen der Badenwürttem-bergischen Forstlichen Versuchs und Forschungsanstalt, 1971.
  54. Trincado G., Kiviste A.K., Gadow K.v., Preliminary site index models for native roble (Nothofagus oblicua) and raulí (N. alpina) in Chile, N.Z. J. For. Sci. 32 (2002) 322-333.