Free access
Issue
Ann. For. Sci.
Volume 65, Number 6, September 2008
Article Number 612
Number of page(s) 10
DOI http://dx.doi.org/10.1051/forest:2008045
Published online 04 September 2008
References of  Ann. For. Sci. 65 (2008) 612
  1. Akachuku A.E. and Abolarin D.A., 1989. Variations in the pith eccentricity and ring width in teak (Tectona grandis L.F.). Trees 3: 111–116 [CrossRef].
  2. Albert S. and Shah J.J., 1998. Early ontogeny of vascular meristem in the petiole of Gmelina arborea (Verbenaceae) and Tabebuia rosea (Bignoniaceae). Phytomorphology 48: 187–194.
  3. Archer RR., 1986. Growth Stresses and Strains in Trees. Springer-Verlag, New York. pp. 150–151.
  4. ASTM (American Society for Testing and Materials), 2003. Standard practice for establishing structural grades and related allowable properties for visually graded lumber D-245-00 (reproved 2002). Annual Book of ASTM Standards, Vol 04.10., Philadelphia, USA, pp. 125–158.
  5. Cassens D.I., 2004. Factors determining the suitability of trees and logs for the face veneer industry. In Proceedings of the 14th Central Hardwood Forest Conference. GTR-NE-316, Proceedings of a Conference held at the Ohio Agriculture Research and Development Center (OARDC), The Ohio State University, Wooster, Ohio, March 16–19.
  6. Clair B., Alméras T., and Sugiyama J., 2006. Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Ann. For. Sci. 63: 507–510 [EDP Sciences] [CrossRef].
  7. Constant T., Mothe F., Badia M.A., and Saint-Andre L., 2003. How to relate the standing tree shape to internal wood characteristics: proposal of an experimental method applied to poplar trees. Ann. For. Sci. 60: 371–378 [EDP Sciences] [CrossRef].
  8. Cremer K.W., 1998. Recovering of Pinus radiata saplings from tilting and bending. Aust. For. 61: 211–219.
  9. Dumail F. and Castera P., 1997. Transverse shrinkage in maritime pine juvenile wood. Wood Sci. Tech. 31: 251–264 [CrossRef].
  10. Dvorak W.S., 2004. World view of Gmelina arborea: opportunities and challenges. New For. 28: 111–126.
  11. Galloway G., Ugalde L., and Vasquez W., 2001. Importance of density reduction in tropical plantations: Experiences in Central America. Forests Trees and Livelihoods 11: 217–232.
  12. Gartner B., 2005. Assessing wood characteristics and wood quality in intensively managed plantations. J. For. 103: 75–77.
  13. Herrera L., 1990. Clima y vegetación de Costa Rica. Departamento de Historia Natural, Museo Nacional de Costa Rica, 515 p.
  14. Jane F.E., Wilson K., and White D.J., 1970. The structure of wood. Black, London, 216 p.
  15. Kellog R.M. and Barber F.J., 1981. Stem eccentricity in coastal western hemlock. Can. J. For. Res. 11: 714–718.
  16. Koch P., Côté Jr., Schlieter J., and Day A.C., 1990. Incidence of compression wood and stem eccentricity in lodgepole pine of North America. USDA Forest Service, Intermountain Research Station, Research paper INT-420, Ogden, USA, 42 p.
  17. Kucera L.J. and Philipson W.R., 1977. Growth eccentricity and reaction anatomy in branchwood of Drimys einteri and five native New Zealand trees. N.Z. J. Bot. 15: 517–524.
  18. Little S. and Mergen F., 1966. External and internal changes associated with basal-crook formation in the pith and short leaf pines. Forestry 37: 179–201.
  19. Lundgren C., 2000. Predicting log type and knot size category using external log shape data from a 3D log scanner. Scand. J. For. Res. 15: 119–126 [CrossRef].
  20. Machado J.S. and Cruz H.P., 2005. Within stem variation of Maritime Pine timber mechanical properties. Holz Roh- Werkst. 63: 154–159 [CrossRef].
  21. Manson E.G., 1985. Cause of juvenile instability of Pinus radiata in New Zealand. N.Z. For. Sci. 15: 263–280.
  22. Mikesell J.E. and Schroeder A.C., 1980. Development of chambered pith in stems of Phytolacca americana L. (Phytolaccaceae). Am. J. Bot. 97: 111–118 [CrossRef].
  23. Moya R., 2004a. Wood of Gmelina arborea in Costa Rica. New For. 28: 299–317.
  24. Moya R., 2004b. Effect of management treatment and growing regions on wood properties of Gmelina arborea in Costa Rica, New For. 28: 325–330.
  25. Moya R. and Muñoz F., 2008. Wet Pockets in kiln-dried Gmelina arborea lumber. J. Trop. For. Sci. 20: 48–56.
  26. Moya R. and Tomazello M., 2007a. Wood density and fiber dimensions of Gmelina arborea in fast growth trees in Costa Rica: relation to the growth rate. Investig. Agrar. Sist. Recur. For. 16: 267–276.
  27. Moya R. and Tomazello M., 2007b. Relationship between anatomical features and intra-ring wood density profiles in Gmelina arborea applying X-ray densitometry. Cerne 13: 384–392.
  28. Rune G. and Warensjö M., 2002. Basal sweep and compression wood in young Scots pine trees. Scand. J. For. Res. 17: 529–537 [CrossRef].
  29. Saint-André L. and Leban J.M., 2001. A model for the position and ring eccentricity in transverse sections of Norway spruce logs. Holz Roh- Werkst. 59: 137–144 [CrossRef].
  30. Singleton R., DeBell D.S., Marshall D.D., and Gartner B.L., 2003. Eccentricity and fluting in young-growth western hemlock in Oregon. West J. Appl. For. 18: 221–228.
  31. Skatter S.H. and Gjerdrum P., 1998. Simulated yield in a sawmill using different measurement technologies, Holz Roh- Werkst. 56: 267–274.
  32. Snepthorne L. and Cochran E., 1980. Statistical methods. The Iowa State University Press, 7th ed., IOWA, USA, 615 p.
  33. Timell T.E., 1986. Compression wood in gymnosperms, Vols. 1–3. Springer Verlag, Berlin Heidelberg, New York, 425 p.
  34. Warensjö M. and Rune G., 2004. Stem straightness and compression wood in a 22-year-old stand of container-grown Scots pine trees. Silva Fenn. 38: 143–153.
  35. Williamson R.W., 1975. Out-of-roundness in Douglas-fir stems. For. Sci. 21: 365–370.
  36. Zobel B and Van Buijtenen B., 1989. Wood variation: its causes and control. Springer Verlag, New York, 415 p.