Free Access
Issue |
Ann. For. Sci.
Volume 57, Number 3, March-April 2000
|
|
---|---|---|
Page(s) | 201 - 208 | |
DOI | https://doi.org/10.1051/forest:2000111 |
References
-
- 1
- Briggs J.L., Shantz H.L., The wilting coefficient and its determination, Bot. Gaz 53 (1913) 20-37.
- 2
- Barajas-Morales J., Wood structural differences between trees of two tropical forests in Mexico, Iawa Bull. (NS) 6 (1985) 355-364.
- 3
- Canham C.D., Denslow J.S., Platt W.J., Runkle J.R., Spies T.A. White P.S., Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests, Can. J. For. Res. 20 (1990) 620-631.
- 4
- Carlquist S., Hoekman D.A., Ecological wood anatomy of the woody southern California flora, Iawa Bull. (NS) 6 (1986) 319-347.
- 5
- Carlquist S., Ecological factors in wood evolution: a floristic approach, Am. J. Bot. 64 (1977) 887-896.
- 6
- Coleman J.S., Connaughay K.D.M., Ackerly D.D., Interpreting phenotypic variation in plants, Tree 9 (1994) 187-191.
- 7
- Engelbrecht B.M.J., Ökologie und Ökophysiologie von koexistierenden Piper-Arten im Unterwuchs tropischer Regenwälder, Doktorarbeit, Technische Universität Darmstadt, 1998.
- 8
- Ewers F.W., Fisher J.B., Fichtner K., Water flux and xylem structure in vines. in: Putz F.E., Mooney H.A. (Eds.), The biology of vines, Cambridge University Press, Cambridge, 1991, pp. 127-160.
- 9
- Frensch J., Steudle E., Axial and radial hydraulic resistance to roots of maize (Zea mays L.), Plant Physiol. 91 (1989) 719-726.
- 10
- Patiño S., Tyree M.T., Herre E.A., Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphyte Ficus species from Panama, New Phytol. 129 (1995) 125-134.
- 11
- Machado J.-L., Tyree M.T., Patterns of hydraulic architecture and water relations of two tropical canopy trees with contrasting leaf phenologies: Ochroma pyramidale and Pseudobombax septenatum, Tree Physiol. 14 (1994) 219-240.
- 12
- Nardini A., Tyree M.T., Root and shoot hydraulic conductance of seven Quercus species, Ann. Sci. For. 56 (1999) 371-377.
- 13
- North G.B., Ewers F.W., Nobel P.S., Main root - lateral root junctions of two desert succulents: changes in axial and radial components of hydraulic conductivity during drying, Am. J. Bot. 79 (1992) 1039-1050.
- 14
- Richards P.W., The tropical rain forest, 2nd edition, Cambridge University Press, Cambridge, 1996.
- 15
- Sperry J.S., Adler F.R., Campbell G.S., Comstock J.P., Limitation of plant water use by rhizosphere and xylem conductance: results from a model, Plant. Cell. Environ. 21 (1998) 347-359.
- 16
- Tyree M.T., Davis S.D., Cochard H., Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? Iawa Bull. (NS) 15 (1994) 335-360.
- 17
- Tyree M.T., Ewers F.W., The hydraulic architecture of trees and other woody plants, New Phytologist. 119 (1991) 345-360.
- 18
- Tyree M.T., Ewers F.W., Hydraulic architecture of woody tropical plants. in: Mulkey S.S., Chazdon R.L., Smith A.P. (Eds.), Tropical Forest Plant Ecophysiology, Chapman & Hall, New York, 1996, pp. 217-243.
- 19
- Tyree M.T., Kolb K.J., Rood S.B., Patiño S., Vulnerability to drought-induced cavitation of riparian cottonwoods in Alberta: a possible factor in the decline of the ecosystem? Tree Physiol. 14 (1994) 455-466.
- 20
- Tyree M.T., Patiño S., Bennink J., Alexander J., Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field, J. Exp. Bot. 46 (1995) 83-94.
- 21
- Tyree M.T., Snyderman D.A., Wilmot T.R., Machado J.-L., Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni), Plant Physiol. 96 (1991) 1105-1113.
- 22
- Tyree M.T., Sobrado M.A., Stratton L.J., Becker P., Diversity of hydraulic conductance in leaves of temperate and tropical species: possible causes and consequences, J. Trop. For. Sci. 11 (1999) 47-60.
- 23
- Tyree M.T., Velez V., Dalling J.W., Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: Scaling to show possible adaption to differing light regimes, Oecologia 114 (1998) 293-298.
- 24
- Villar-Salvador P., Castro-Díez P., Pérez-Rontomè C., Montserrat-Martí G., Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain, Trees 12 (1997) 90-96.
- 25
- Windsor D.M., Climate and moisture availability in a tropical forest. Long-term records from Barro Colorado Island, Panama. Smithsonian Institution Press, Washington DC, 1990.
- 26
- Yang Y., Tyree M.T., Hydraulic resistance in the shoots of Acer saccharum and its influence on leaf water potential and transpiration, Tree Physiol. 12 (1993) 231-242.
- 27
- Yang S., Tyree M.T., Hydraulic architecture of Acer saccharum and A. rubrum: comparison of branches to whole trees and the contribution of leaves to hydraulic architecture, J. Exp. Bot. 45 (1994) 179-186.
- 28
- Zimmermann M.H., Xylem structure and the ascent of sap. Springer Verlag, Heidelberg, 1983.
- 29
- Zotz G., Tyree M.T., Cochard H., Hydraulic architecture, water relations and vulnerability to cavitation of Clusia uvitana Pittier: a C3-CAM tropical hemiepiphyte, New Phytol. 127 (1994) 287-295.
- 30
- Zotz G., Tyree M.T., Patiño S., Carlton M.R., Hydraulic architecture and water use of selected species from a lower montane forest in Panama, Trees 12 (1998) 302-309.
Abstract
Copyright INRA, EDP Sciences