Free Access
Issue
Ann. For. Sci.
Volume 59, Number 7, November 2002
Page(s) 767 - 776
DOI https://doi.org/10.1051/forest:2002063

References

  1. Ando K., Onda H., Mechanism for deformation of wood as a honeycomb structure. I: Effect of anatomy on the initial deformation process during radial compression, J. Wood Sci. 45 (1999) 120-126.
  2. Badel É., Détermination des propriétés élastiques et du retrait d'un cerne annuel de chêne dans le plan transverse : description de la morphologie, mesures des propriétés microscopiques et calculs d'homogénéisation, Doctoral thesis, ENGREF, Nancy, 1999.
  3. Badel É., Perré P., Détermination des propriétés élastiques d'éléments individuels du plan ligneux du chêne par des essais de traction sur micro-éprouvettes, Ann. For. Sci. 56 (1999) 467-478.
  4. Badel É., Perré P., Using an X-ray imaging device to measure the swelling coefficients of a group of wood cells, NDT&E International 34 (2001) 345-353.
  5. Bergander A., Salmen L., Variations in transverse fibre wall properties: relations between elastic properties and structure, Holzforschung 54 (2000) 654-660.
  6. Boutelje J.B., The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity, Holzforschung 16 (1962) 33-46.
  7. Clair B., Despaux G., Chanson B., Thibaut B., Utilisation de la microscopie acoustique pour l'étude des propriétés locales du bois : étude préliminaire de paramètres expérimentaux, Ann. For. Sci. 87 (2000) 335-343.
  8. Diao X., Furuno T., Uehara T., Analysis of cell arrangements in softwoods using two-dimensional fast Fourier transform, Mokusai Gakkaishi 42 (1996) 634-641.
  9. Farruggia F., Perré P., An explanation of mechanical behaviour of early wood (Picea abies) in the transverse plane based only on the arrangement of the cells, Plant biomechanics, Conference Proceedings (1997) 215-221.
  10. Gibson L.J., Ashby M.F., Cellular solids, structure and properties, Pergamon Press, 1988.
  11. Harrington J.J., Astley R.J., Brocker R.E., Modelling the elastic properties of softwood. Part I, the cell wall lamellae, Holz Roh- Werkst. 56 (1998) 43-50.
  12. Harrington J.J., Brocker R., Astley R.J., Modelling the elastic properties of softwood. Part II: the cellular microstructure, Holz Roh- Werkst. 56 (1998) 37-41.
  13. Kaftandjian V., Zhu Y.M., Roziere G., Peix G., Babot D., A comparison of the ball, wire, edge and bar/space pattern techniques for modulation transfer function measurements of linear X-ray detectors, J. X-ray Sci. Technol. 6 (1996) 205-221.
  14. Kaftandjian V., Zhu Y.M., Peix G., Babot D., Contrast transfer function measurement of X-ray solid state linear detectors using bar/space pattern methods, NDT&E International 29 (1996) 3-11.
  15. Kifetew G., The influence of the geometrical distribution of cell wall tissues on the transverse anisotropic dimensional changes of softwood, Holzforschung 53 (1999) 347-349.
  16. Koponen S., Toratti T., Kanerva P., Modelling elastic and shrinkage properties of wood based on cell structure, Wood Sci. Technol. 25 (1991) 25-32.
  17. Lichtenegger H., Reiterer A., Tschegg S., Fratzl P., Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction, J. Appl. Crystalogr. 32 (1999) 1127-1133.
  18. Perré P., The use of homogeneisation to simulate heat and mass transfer in wood: towards a double porosity approach plenary lecture, International Drying Symposium, published in Drying'98, 1998, 57-72.
  19. Person K., Micromechanical modelling of wood and fibre properties, Report TVSM-1013, Doctoral thesis, Lund Univesity, 2000.
  20. Polge H., Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d'échantillons prélevés à la tarière sur des arbres vivants, Ann. Sci. For. 23 (1966).
  21. Watanabee U., Shrinking and elastic properties of coniferous wood in relation to cellular structure, Doctoral thesis, Kyoto University, 1998.

Abstract

Copyright INRA, EDP Sciences