Free Access
Ann. For. Sci.
Volume 60, Number 3, April 2003
Page(s) 195 - 208


  1. Ackerly D., Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models, Oecologia 119 (1999) 300-310.
  2. Albaugh T.J., Allen H.L., Dougherty P.M., Kress L.W., King J.S., Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions, For. Sci. 44 (1998) 317-328.
  3. Beaudet M., Messier C., Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient, Can. J. For. Res. 28 (1998) 1007-1015.
  4. Belsley D.A., Kuh E., Welsch R.E., Regression diagnostics: identifying influential data and sources of collinearity, John Wiley & Sons, New York, 1980.
  5. Berninger F., Mencuccini M., Nikinmaa E., Grace J., Hari P., Evaporative demand determines branchiness of Scots pine, Oecologia 102 (1995) 164-168.
  6. Bongers F., Sterck F.J., Architecture and development of rainforest trees: responses to light variation, in: Newbery D.M., Prins H.H.T., Brown N.D. (Eds.), Dynamics of tropical communities, The 37th Symposium of the British Ecological Society, London 1998, Blackwell Science, London, 1998, pp. 125-162.
  7. Boojh R., Ramakrishnan P.S., Growth strategy of trees related to successional status. I. Architecture and extension growth, For. Ecol. Manage. 4 (1982) 359-374.
  8. Borchert R., Slade N.A., Bifurcation ratios and the adaptive geometry of trees, Bot. Gaz. 142 (1981) 394-401.
  9. Brooks J.R., Hinckley T.M., Sprugel D.G., Acclimation responses of mature Abies amabilis sun foliage to shading, Oecologia 100 (1994) 316-324.
  10. Brooks J.R., Sprugel D.G., Hinckley T.M., The effects of light acclimation during and after foliage expansion on photosynthesis of Abies amabilis foliage within the canopy, Oecologia 107 (1996) 21-32.
  11. Canham C.D., Growth and canopy architecture of shade-tolerant trees: response to canopy gaps, Ecology 69 (1988) 786-795.
  12. Chen H.Y.H., Klinka K., Kayahara G.J., Effects of light on growth, crown architecture, and specific leaf area for naturally established Pinus contorta var. latifolia and Pseudotsuga menziesii var. glauca saplings, Can. J. For. Res. 26 (1996) 1149-1157.
  13. Cline M.G., The role of hormones in apical dominance: new approaches to an old problem in plant development, Physiol. Plant. 90 (1994) 230-237.
  14. Cregg B.M., Teskey O., Dougherty P.M., Effect of shade stress on growth, morphology, and carbon dynamics of loblolly pine branches, Trees 7 (1993) 208-213.
  15. Duchesneau R., Lesage I., Messier C., Morin H., Effects of light and intraspecific competition on growth and crown morphology of two size classes of understory balsam fir saplings, For. Ecol. Manage. 140 (2001) 215-225.
  16. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Pauliben D., Zeigerwerte von Pflanzen in Mitteleuropa, Scripta Geobota- nica, Verlag Erich Goltze KG, Göttingen, 1991.
  17. Everett R.L., Thran D.F., Nutrient dynamics in singleleaf pinyon (Pinus monophylla Torr & Frem.) needles, Tree Physiol. 10 (1992) 59-68.
  18. Ewers F.W., Secondary growth in needle leaves of Pinus longaeva (bristlecone pine) and other conifers: quantitative data, Amer. J. Bot. 69 (1982) 1552-1559.
  19. Fisher J.B., Honda H., Branch geometry and effective leaf area: a study of Terminalia-branching pattern. I. Theoretical trees, Amer. J. Bot. 66 (1979) 633-644.
  20. Ford E.D., Branching, crown structure and the control of timber production, in: Cannell M.G.R., Jackson J.E. (Eds.), Attributes of trees as crop plants, Institute of Terrestrial Ecology (Natural Environment Research Council), Monks Wood Experimental Station, Abbots Ripton, Huntigdon, 1985, pp. 228-252.
  21. Ford E.D., The control of tree structure and productivity through the interaction of morphological development and physiological processes, Int. J. Plant Sci. 153 (1992) S147-S162.
  22. Ford E.D., Avery A., Ford R., Simulation of branch growth in the Pinaceae: interactions of morphology, phenology, foliage productivity, and the requirement for structural support, on the export of carbon, J. Theor. Biol. 146 (1990) 15-36.
  23. Ford E.D., Deans J.D., Milne R., Shoot extension in Picea sitchensis. I. Seasonal variation within a forest canopy, Ann. Bot. 60 (1987) 531-542.
  24. Freudenberg K., Lignin: its constitution and formation from p-hydroxycinnamyl alcohols, Science 148 (1965) 595-600.
  25. Gilmore D.W., Seymour R.S., Halteman W.A., Greenwood M.S., Canopy dynamics and the morphological development of Abies balsamea: effects of foliage age on specific leaf area and secondary vascular development, Tree Physiol. 15 (1995) 47-55.
  26. Givnish T.J., Adaptation to sun and shade: a whole-plant perspective, Aust. J. Plant Physiol. 15 (1988) 63-92.
  27. Greenway K.J., Macdonald S.E., Lieffers V.J., Is long-lived foliage in Picea mariana an adaptation to nutrient-poor conditions?, Oecologia 91 (1992) 184-191.
  28. Grimshaw H.M., Allen S.E., Parkinson J.A., Nutrient elements, in: Allen S.E. (Ed.), Chemical analysis of ecological materials, Blackwell Scientific Publications, Oxford, 1989, pp. 81-159.
  29. Hånell B., Postdrainage forest productivity of peatlands in Sweden, Can. J. For. Res. 18 (1988) 1443-1456.
  30. Helmisaari H.-S., Temporal variation in nutrient concentrations of Pinus sylvestris needles, Scand. J. Forest Res. 5 (1990) 177-193.
  31. Helmisaari H.-S., Nutrient retranslocation within the foliage of Pinus sylvestris, Tree Physiol. 10 (1992) 45-58.
  32. Kaitaniemi P., Neuvonen S., Nyyssönen T., Effects of cumulative defoliations on growth, reproduction, and insect resistance in mountain birch, Ecology 80 (1999) 524-532.
  33. Kellomäki S., Effect of the within-stand light conditions on the share of stem, branch and needle growth in a twenty-year-old Scots pine stand, Silva Fenn. 15 (1981) 130-139.
  34. Kellomäki S., Ikonen V.P., Peltola H., Kolström T., Modelling the structural growth of Scots pine with implications for wood quality, Ecol. Modelling 122 (1999) 117-134.
  35. Kellomäki S., Oker-Blom P., Canopy structure and light climate in a young Scots pine stand, Silva Fenn. 17 (1983) 1-21.
  36. Kellomäki S., Strandman H., A model for the structural growth of young Scots pine crowns based on light interception by shoots, Ecol. Modelling 80 (1995) 237-250.
  37. Kikuzawa K., Leaf survivals of tree species in deciduous broad-leaved forests, Pl. Sp. Biol. 3 (1988) 67-76.
  38. King D.A., Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments, Tree Physiol. 17 (1997) 251-258.
  39. Kohyama T., Growth pattern of Abies mariesii saplings under conditions of open-growth and suppression, Bot. Mag. Tokyo 93 (1980) 13-24.
  40. Küppers M., Canopy gaps: competitive light interception and economic space filling - a matter of whole-plant allocation, in: Caldwell M.M., Pearcy R.W. (Eds.), Exploitation of environmental heterogeneity by plants. Ecophysiological processes above- and belowground, Physiological ecology. A series of monographs, texts, and treatises, Academic Press, San Diego, 1994, pp. 111-144.
  41. Kull O., Broadmeadow M., Kruijt B., Meir P., Light distribution and foliage structure in an oak canopy, Trees 14 (1999) 55-64.
  42. Linder S., Responses to water and nutrients in coniferous ecosystems, in: Schulze E.-D., Zwölfer H. (Eds.), Potentials and limitations of ecosystem analysis, Ecological Studies, Springer- Verlag, Berlin, 1987, pp. 180-202.
  43. Linder S., Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce, Ecological Bulletins 44 (1995) 178-190.
  44. Mailly D., Kimmins J.P., Growth of Pseudotsuga menziesii and Tsuga heterophylla seedlings along a light gradient: resource allocation and morphological acclimation, Can. J. Bot. 75 (1997) 1424-1435.
  45. Miyaji K.-I., Da Silva W.S., Alvim P.D., Longevity of leaves of a tropical tree, Theobroma cacao, grown under shading, in relation to position within the canopy and time of emergence, New Phytol. 135 (1997) 445-454.
  46. Morgan J., Cannell M.G.R., Support costs of different branch designs: effects of position, number, angle and deflection of laterals, Tree Physiol. 4 (1988) 303-313.
  47. Murthy R., Dougherty P.M., Effect of carbon dioxide, fertilization and irrigation on loblolly pine branch morphology, Trees 11 (1997) 485-493.
  48. Niinemets Ü., Acclimation to low irradiance in Picea abies: influences of past and present light climate on foliage structure and function, Tree Physiol. 17 (1997) 723-732.
  49. Niinemets Ü., Distribution patterns of foliar carbon and nitrogen as affected by tree dimensions and relative light conditions in the canopy of Picea abies, Trees 11 (1997) 144-154.
  50. Niinemets Ü., Research review. Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants, New Phytol. 144 (1999) 35-47.
  51. Niinemets Ü., Climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs at the global scale, Ecology 82 (2001) 453-469.
  52. Niinemets Ü., Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris, Tree Physiol. 22 (2002) 515-535.
  53. Niinemets Ü., Bilger W., Kull O., Tenhunen J.D., Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient, Plant Cell Environ. 21 (1998) 1205-1218.
  54. Niinemets Ü., Cescatti A., Lukjanova A., Tobias M., Truus L., Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility, Agric. For. Meteorol. 111 (2002) 121-140.
  55. Niinemets Ü., Ellsworth D.S., Lukjanova A., Tobias M., Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light, Tree Physiol. 21 (2001) 1231-1244.
  56. Niinemets Ü., Kull O., Effects of light availability and tree size on the architecture of assimilative surface in the canopy of Picea abies: variation in shoot structure, Tree Physiol. 15 (1995) 791-798.
  57. Niinemets Ü., Kull O., Tenhunen J.D., Variability in leaf morphology and chemical composition as a function of canopy light environment in co-existing trees, Int. J. Plant Sci. 160 (1999) 837-848.
  58. Nikinmaa E., Geographical aspects of the growth of Scots pine: results of simulations, in: Hari P., Ross J., Mecke M. (Eds.), Production process of Scots pine: geographical variation and models, Acta Forestalia Fennica, Finnish Society of Forest Science - Finnish Forest Research Institute, Helsinki, 1996, pp. 97-119.
  59. Norgren O., Growth analysis of Scots pine and lodgepole pine seedlings, For. Ecol. Manage. 86 (1996) 15-26.
  60. O'Connell B.M., Kelty M.J., Crown architecture of understory and open-grown white pine (Pinus strobus L.) saplings, Tree Physiol. 14 (1994) 89-102.
  61. Oohata S., Shidei T., Studies on the branching structure of trees. I. Bifurcation ratio of trees in Horton's law, Jap. J. Ecol. 14 (1971) 97-105.
  62. Osmond C.B., Anderson J.M., Ball M.C., Egerton J.G., Compromising efficiency: the molecular ecology of light-resource utilization in plants, in: Press M.C., Scholes J.D., Barker M.G. (Eds.), Physiological plant ecology. The 39th Symposium of the British Ecological Society held at the University of York, 7-9 September 1998, Blackwell Science, Oxford, 1999, pp. 1-24.
  63. Päätalo M.-L., Peltola H., Kellomäki S., Modelling the risk of snow damage to forests under short-term snow loading, For. Ecol. Manage. 116 (1999) 51-70.
  64. Pearcy R.W., Valladares F., Resource acquisition by plants: the role of crown architecture, in: Press M.C., Scholes J.D., Barker M.G. (Eds.), Physiological plant ecology, Blackwell Science - MPG Books Ltd., Cornwall, 1999, pp. 45-66.
  65. Pickett S.T.A., Kempf J.S., Branching patterns in forest shrubs and understory trees in relation to habitat, New Phytol. 86 (1980) 219-228.
  66. Reich P.B., Koike T., Gower S.T., Schoettle A.W., Causes and consequences of variation in conifer leaf life-span, in: Smith W.K., Hinckley T.M. (Eds.), Ecophysiology of coniferous forests, Physiological ecology. A series of monographs, texts, and treatises, Academic Press, Inc., San Diego, 1995, pp. 225-254.
  67. Roberntz P., Effects of long-term CO2 enrichment and nutrient availability in Norway spruce. I. Phenology and morphology of branches, Trees 13 (1999) 188-198.
  68. Room P.M., Maillette L., Hanan J.S., Module and metamer dynamics and virtual plants, Adv. Ecol. Res. 25 (1994) 105-157.
  69. Ruohomäki K., Haukioja E., Repka S., Lehtilä K., Leaf value: effects of damage to individual leaves on growth and reproduction of mountain birch shoots, Ecology 78 (1997) 2105-2117.
  70. Sampson D.A., Allen H.L., Light attenuation in a 14-year-old loblolly pine stand as influenced by fertilization and irrigation, Trees 13 (1998) 80-87.
  71. SAS Institute Inc., SAS/STAT User's guide, Version 6, SAS Institute Inc., Cary, NC, 1990.
  72. Schoettle A.W., Potential effect of premature needle loss on the foliar biomass and nutrient retention of lodgepole pine, in: Olson R.K., Lefohn A.S. (Eds.), Transactions of air pollution on western forests, Air & Waste Management Association, Anheim, 1989, pp. 443-454.
  73. Sionit N., Response of soybean to two levels of mineral nutrition in CO2-enriched atmosphere, Crop Sci. 23 (1983) 329-333.
  74. Sorrensen-Cothern K.A., Ford E.D., Sprugel D.G., A model of competition incorporating plasticity through modular foliage and crown development, Ecol. Monogr. 63 (1993) 277-304.
  75. Sprugel D.G., Hinckley T.M., Schaap W., The theory and practice of branch autonomy, Annu. Rev. Ecol. Syst. 22 (1991) 309-334.
  76. Steingraeber D.A., Phenotypic plasticity of branching pattern in sugar maple (Acer saccharum), Amer. J. Bot. 69 (1982) 638-640.
  77. Steingraeber D.A., Kascht L.J., Frank D.H., Variation of shoot morphology and bifurcation ratio in sugar maple (Acer saccharum) saplings, Amer. J. Bot. 66 (1979) 441-445.
  78. Stenberg P., Kuuluvainen T., Kellomäki S., Grace J.C., Jokela E.J., Gholz H.L., Crown structure, light interception and productivity of pine trees and stands, in: Gholz H.L., Linder S., McMurtrie R.E. (Eds.), Environmental constraints on the structure and productivity of pine forest ecosystems: a comparative analysis, Ecological Bulletins, Munksgaard International Booksellers and Publishers, Copenhagen, 1994, pp. 20-34.
  79. Stenberg P., Smolander H., Kellomäki S., Description of crown structure for light interception models: angular and spatial distribution of shoots in young Scots pine, in: Linder S., Kellomäki S. (Eds.), Management of structure and productivity of boreal and subalpine forests, Studia Forestalia Suecica, 1993, pp. 43-50.
  80. Stoll P., Schmid B., Plant foraging and dynamic competition between branches of Pinus sylvestris in contrasting light environments, J. Ecol. 86 (1998) 934-945.
  81. Takenaka A., Shoot growth responses to light microenvironment and correlative inhibition in tree seedlings under a forest canopy, Tree Physiol. 20 (2000) 987-991.
  82. Tucker G.F., Emmingham W.H., Morphological changes in leaves of residual western hemlock after clear and shelterwood cutting, For. Sci. 23 (1977) 195-203.
  83. Turner I.M., Gong W.K., Ong J.E., Bujang J.S., Kohyama T., The architecture and allometry of mangrove saplings, Funct. Ecol. 9 (1995) 205-212.
  84. Valladares F., Architecture, ecology, and evolution of plant crowns, in: Pugnaire F.I., Valladares F. (Eds.), Handbook of functional plant ecology, Marcel Dekker, Inc., New York, 1999, pp. 121-194.
  85. Veber K., Vegetation history of the Endla mire system, in: Kumari E. (Ed.), Estonian wetlands and their life, Estonian contributions to the IBP, Valgus, Tallinn, 1974, pp. 160-182.
  86. Vose J.M., Allen H.L., Leaf area, stemwood growth, and nutrition relationships in loblolly pine, For. Sci. 34 (1988) 547-563.
  87. Whitney G.G., The bifurcation ratio as an indicator of adaptive strategy in woody plant species, Bull. Torrey Bot. Club 103 (1976) 67-72.
  88. Williams H., Messier C., Kneeshaw D.D., Effects of light availability and sapling size on the growth and crown morphology of understory Douglas-fir and lodgepole pine, Can. J. For. Res. 29 (1999) 222-231.
  89. Wilson B.F., Branches versus stems in woody plants: control of branch diamater growth and angle, Can. J. Bot. 76 (1998) 1852-1856.
  90. Wilson B.F., Apical control of branch growth and angle in woody plants, Amer. J. Bot. 87 (2000) 601-607.


Copyright INRA, EDP Sciences