Free Access
Ann. For. Sci.
Volume 60, Number 5, July-August 2003
Page(s) 439 - 448


  1. Bartelink H.H., Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L.), Ann. Sci. For. 54 (1997) 39-50.
  2. Baskerville G.L., Use of logarithmic regression in the estimation of plant biomass, Can. J. For. Res. 2 (1972) 49-53.
  3. Beauchamp J.J, Olson J.S., Corrections for bias in regression estimates after logarithmic transformation, Ecol. 54 (1973) 1403-1407.
  4. Cannell M.G.R., World forest biomass and primary production data, Academic Press, London, 1982.
  5. Chambers J.Q., Santos J., Ribeiro R.J., Higuchi N., Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest, For. Ecol. Manage. 5348 (2000) 1-12.
  6. Dafis S., Standortskundliche Untersuchungen in Buchenwaldern, Epist. Epet. Geopon. Dasol. Shol. Panepist. Thessaloniki 13 (1969) 1-48 (in Greek).
  7. Finney D.J., On the distibution of a variate whose logarithm is normally distributed, J. R. Stat. Soc. Series B 7 (1941) 155-161.
  8. Karagiannakidou V., Site research in beech forests of the Chortiatis mountain Range, NE Greece, Bot. Helv. 103 (1993) 23-27.
  9. Ketterings Q.M., Coe R., van Noordwijk M., Ambagau Y., Palm C.A., Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests, For. Ecol. Manage. 146 (2001) 199-209.
  10. Madgwick H.A.I., Biomass and productivity models of forest canopies, in: Reichle D.E. (Ed.), Ecological studies. 1. Analysis of temperate forest ecosystems, Springer-Verlag, New York, 1970, pp. 47-54.
  11. Madgwick H.A.I., Satoo T., On estimating the aboveground weights of tree stands, Ecol. 56 (1975) 1446-1450.
  12. McMahon T.A., Kronauer R.E., Tree structure: Deducing the principle of mechanical design, J.Theor. Biol. 59 (1976) 443-466.
  13. McWilliam A.L.C., Roberts J.M., Cabral O.M.R, Leitao M.V.B.R., DeCosta A.C.L., Maitelli G.T., Zamparoni, C.A.G.P., Leaf-area index and aboveground biomass of terra-firme rain-forest and adjacent clearings in Amazonia, Func. Ecol. 7 (1993) 310-317.
  14. Meadows J.S., Hodges J.D., Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash, For. Sci. 48 (2002) 69-76.
  15. Mountford M.D., Bunce R.G.H., Regression sampling with allometrically related variables with particular reference to production studies, Forestry 46 (1973) 203-212.
  16. Nihlgard B., Plant biomass, primary production and distribution of chemical elements in a beech and planted spruce forest in South Sweden, Oikos 23 (1972) 69-81.
  17. Niklas K.J., Plant allometry. The scaling of form and process, The Univ. Chicago Press, Chicago, 1994.
  18. Paraskevopoulou A., Physical and anatomical properties of beech (Fagus sp.) wood, For. Res. CI (1990) 45-79 (in Greek with English summary).
  19. Parde J., Forest biomass, For. Abstr. Rev. Art. 41 (1980) 343-362.
  20. Parresol B.R., Assessing tree and stand biomass: A review with examples and critical comparisons, For. Sci. 45 (1999) 573-593.
  21. Pastor J., Aber J.D., Melillo J.M., Biomass prediction using generalised allometric regressions for some Northeast tree species, For. Ecol. Manage. 7 (1984) 265-274.
  22. Payandeh B., Choosing regression models for biomass prediction equations, For. Chron. 57 (1981) 229-232.
  23. Santa Regina I., Tarazona T., Organic matter and nitrogen dynamics in a mature forest of common beech in the Sierra de la Demanda, Spain, Ann. For. Sci. 58 (2001) 301-314.
  24. Sfikas G., Trees and shrubs of Greece, Efstadiadis Group, Athens, 1978.
  25. Shinozaki K.K., Yoda K., Hozumi L., Kira T., A quantitative analysis of plant form - the pipe model theory. I. Basic analysis, Jap. J. Ecol. 14 (1964) 97-105.
  26. Sprugel D.G., Correcting for bias in log-transformed allometric equations, Ecology 64 (1983) 209-210.
  27. Stefanidis G., Management plan of Naousa's forest, Municipality of Naousa, 1991.
  28. Strid A., Tan K., Mountain flora of Greece, Vol. 2, Edinburgh University Press, 1991.
  29. Ter-Mikaelian M.T., Korzukhin M.D., Biomass equations for sixty-five North American tree species, For. Ecol. Manage. 97 (1997) 1-24.
  30. West G.B., Brown J.H., Enquist B.J., A general model for the structure and allometry of plant vascular system, Nature 400 (1999) 664-667.
  31. Whittaker R.H., Bormann F.H., Likens G.E., Siccana T.G., The Hubbard Brook ecosystems study: forest biomass and production, Ecol. Monogr. 44 (1974) 233-254.
  32. Wiant H.V.J., Harner E.J., Percent bias and standard error in logarithmic regression, For. Sci. 25 (1979) 167-168.
  33. Yandle D.O., Wiant H.V., Estimation of plant biomass based on the allometric equation, Can. J. For. Res. 11 (1981) 833-834.
  34. Zar J.H., Calculation and miscalculation of the allometric equation as a model in biological data, Bioscience 18 (1968) 1118-1120.
  35. Zianis D., Mencuccini M., Allometric equations for beech trees (Fagus moesiaca Cz.) and biomass estimation along an elevation gradient in Vermio Mountain, northern Greece, in: Radoglou K. (Ed.), Proceedings of the International Conference: Forest Research: A Challenge For an Integrated European Approach, NAGREF, Thessaloniki, 2001, pp. 54-59.


Copyright INRA, EDP Sciences