Free Access
Ann. For. Sci.
Volume 61, Number 5, July-August 2004
Page(s) 419 - 429
References of Ann. For. Sci. 61 419-429
  1. Bond B.J., Farnsworth B.T., Coulombe R.A., Winner W.E., Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance, Oecologia 120 (1999) 183-192 [CrossRef].
  2. Boyer J.S., Measuring the Water Status of Plants and Soils, Academic Press, San Diego, 1995.
  3. Brodribb T., Hill R.S., The importance of xylem constraints in the distribution of conifer species, New Phytol. 143 (1999) 365-372 [CrossRef].
  4. Brown R.W., Oosterhuis D.M., Measuring plant and soil water potentials with thermocouple psychrometers: some concerns, Agron. J. 84 (1992) 78-86.
  5. Clearwater M.J., Meinzer F.C., Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees, Tree Physiol. 21 (2001) 683-690 [PubMed].
  6. Ellsworth D.S., Reich P.B., Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest, Oecologia 96 (1993) 169-178.
  7. Fernández J.E., Moreno F., Girón I.F., Blázquez O.M., Stomatal control of water use in olive tree leaves, Plant Soil 190 (1997) 179-192 [CrossRef].
  8. Fischer D.G., Kolb T.E., DeWald L.E., Changes in whole-tree water relations during ontogeny of Pinus flexilis and Pinus ponderosa in a high-elevated meadow, Tree Physiol. 22 (2002) 675-685 [PubMed].
  9. Frey T. (Ed.), Spruce Forest Ecosystem Structure and Ecology. 1. Introductory data on the Estonian Vooremaa Project, Acad. Sci. Estonian SSR, Tartu, 1977.
  10. Gartner B.L., Patterns of xylem variation within a tree and their hydraulic and mechanical consequences, in: Gartner B.L. (Ed.), Plant stems: Physiological and functional morphology, Academic Press, San Diego, 1995, pp. 125-149.
  11. Hubbard R.M., Bond B.J., Ryan M.G., Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees, Tree Physiol. 19 (1999) 165-172 [PubMed].
  12. Hubbard R.M., Ryan M.G., Stiller V., Sperry J.S., Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine, Plant Cell Environ. 24 (2001) 113-121 [CrossRef].
  13. Hubbard R.M., Bond B.J., Senock R.S., Ryan M.G., Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine, Tree Physiol. 22 (2002) 575-581 [PubMed].
  14. Jarvis P.G., The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Phil. Trans. R. Soc. Lond. B. 273 (1976) 593-610.
  15. Joyce B.J., Steiner K.C., Systematic variation in xylem hydraulic capacity within the crown of white ash (Fraxinus americana), Tree Physiol. 15 (1995) 649-656 [PubMed].
  16. Kolb T.E., Stone J.E., Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest, Tree Physiol. 20 (2000) 1-12 [PubMed].
  17. Lemoine D., Cochard H., Granier A., Within crown variation in hydraulic architecture in beech (Fagus sylvatica L): evidence for a stomatal control of xylem embolism, Ann. For. Sci. 59 (2002) 19-27 [EDP Sciences] [CrossRef].
  18. McDowell N., Barnard H., Bond B.J., Hinckley T., Hubbard R.M., Ishii H., Köstner B., Magnani F., Marshall J.D., Meinzer F.C., Phillips N., Ryan M.G., Whitehead D., The relationship between tree height and leaf area: sapwood area ratio, Oecologia 132 (2002) 12-20 [CrossRef].
  19. Meinzer F.C., Co-ordination of vapour and liquid phase water transport properties in plants, Plant Cell Environ. 25 (2002) 265-274 [CrossRef] [PubMed].
  20. Meinzer F.C., Goldstein G., Jackson P., Holbrook N.M., Gutiérrez M.V., Cavelier J., Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties, Oecologia 101 (1995) 514-522.
  21. Meinzer F.C., Goldstein G., Franco A.C., Bustamante M., Igler E., Jackson P., Caldas L., Rundel P.W., Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species, Funct. Ecol. 13 (1999) 273-282 [CrossRef].
  22. Meinzer F.C., Clearwater M.J., Goldstein G., Water transport in trees: current perspectives, new insights and some controversies, Environ. Exp. Bot. 45 (2001) 239-262 [CrossRef] [PubMed].
  23. Mencuccini M., Grace J., Climate influences the leaf area/sapwood area ratio in Scots pine, Tree Physiol. 15 (1995) 1-10 [PubMed].
  24. Mitchell A.K., Acclimation of Pacific yew (Taxus brevifolia) foliage to sun and shade, Tree Physiol. 18 (1998) 749-757 [PubMed].
  25. Morecroft M.D., Roberts J.M., Photosynthesis and stomatal conductance of mature canopy Oak (Quercus robur) and Sycamore (Acer preudoplatanus) trees throughout the growing season, Funct. Ecol. 13 (1999) 332-342 [CrossRef].
  26. Nardini A., Relations between efficiency of water transport and duration of leaf growth in some deciduous and evergreen trees, Trees 16 (2002) 417-422 [CrossRef].
  27. Nardini A., Salleo S., Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15 (2000) 14-24 [CrossRef].
  28. Niinemets Ü., Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris, Tree Physiol. 22 (2002) 515-535 [PubMed].
  29. Oren R., Sperry J.S., Ewers B.E., Pataki D.E., Phillips N., Megonigal J.P., Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects, Oecologia 126 (2001) 21-29 [CrossRef].
  30. Oren R., Sperry J.S., Katul G.G., Pataki D.E., Ewers B.E., Phillips N., Schäfer K.V.R., Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit, Plant Cell Environ. 22 (1999) 1515-1526 [CrossRef].
  31. Paal J., Classification of Estonian Vegetation Site Types, EV Keskkonnaministeeriumi Info- ja Tehnokeskus, Tallinn, 1997 (in Estonian).
  32. Protz C.G., Silins U., Lieffers V.J., Reduction in branch sapwood hydraulic permeability as a factor limiting survival of lower branches of lodgepole pine, Can. J. For. Res. 30 (2000) 1088-1095 [CrossRef].
  33. Reintam L., Soils in Estonia, in: von Boguslawski E., Limberg P., Reintam L., Wegener H.-R. (Eds.), Soil and Fertilization. Transactions of the International Working Group of Soil Fertility, International Society of Soil Science, Estonian Agricultural Univ., Tartu, 1995, pp. 122-131.
  34. Rijkers T., Pons T.L., Bongers F., The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance, Funct. Ecol. 14 (2000) 77-86 [CrossRef].
  35. Russak V., Solar radiation, in: Ross J. (Ed.), Climate of Tartu and its Changes During the Recent Decades, Eesti TA Astrofüüsika ja Atmosfäärifüüsika Instituut, Tartu, 1990, pp. 51-78 (in Estonian).
  36. Rust S., Roloff A., Reduced photosynthesis in old oak (Quercus robur): the impact of crown and hydraulic architecture, Tree Physiol. 22 (2002) 597-601 [PubMed].
  37. Ryan M.G., Yoder B.J., Hydraulic limits to tree height and tree growth. What keeps trees from growing beyond a certain height? BioScience 47 (1997) 235-242.
  38. Sampson D.A., Smith F.W., Influence of canopy architecture on light penetration in lodgepole pine (Pinus contorta var. latifolia) forests, Agric. For. Meteorol. 64 (1993) 63-79 [CrossRef].
  39. Sellin A., Resistance to water flow in xylem of Picea abies (L.) Karst. trees grown under contrasting light conditions, Trees 7 (1993) 220-226.
  40. Sellin A., Variation in hydraulic architecture of Picea abies (L.) Karst. trees grown under different environmental conditions. Dissertationes Biologicae Universitatis Tartuensis 13, Tartu University, Tartu, 1994.
  41. Sellin A., Resistance to water flow in the xylem of Picea abies trees grown in contrasting edaphic conditions, Proc. Estonian Acad. Sci. Ecol. 6 (1996) 26-40.
  42. Sellin A., Variation in shoot water status of Picea abies (L.) Karst. trees with different life histories, For. Ecol. Manage. 97 (1997) 53-62.
  43. Sellin A., Morphological and stomatal responses of Norway spruce foliage to irradiance within a canopy depending on shoot age, Environ. Exp. Bot. 45 (2001) 115-131 [CrossRef] [PubMed].
  44. Sellin A., Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress, Tree Physiol. 21 (2001) 879-888 [PubMed].
  45. Shumway D.L., Steiner K.C., Kolb T.E., Variation in seedling hydraulic architecture as a function of species and environment, Tree Physiol. 12 (1993) 41-54 [PubMed].
  46. Sinoquet H., Le Roux X., Short term interactions between tree foliage and the aerial environment: An overview of modelling approaches available for tree structure-function models, Ann. For. Sci. 57 (2000) 477-496 [EDP Sciences] [CrossRef].
  47. Sperry J.S., Adler F.R., Campbell G.S., Comstock J.P., Limitation of plant water use by rhizosphere and xylem conductance: results from a model, Plant Cell Environ. 21 (1998) 347-359 [CrossRef].
  48. Stewart J.B., Modelling surface conductance of pine forest, Agric. For. Meteorol. 43 (1988) 19-35 [CrossRef].
  49. Strachan I.B., McCaughey J.H., Stomatal conductance of Populus trichocarpa in southern Iceland in relation to environmental variables, Scand. J. For. Res. 17 (2002) 7-14.
  50. Tausend P.C., Goldstein G., Meinzer F.C., Water utilization, plant hydraulic properties and xylem vulnerability in three contrasting coffee (Coffea arabica) cultivars, Tree Physiol. 20 (2000) 159-168 [PubMed].
  51. Tausend P.C., Meinzer F.C., Goldstein G., Control of transpiration in three coffee cultivars: the role of hydraulic and crown architecture, Trees 14 (2000) 181-190.
  52. Terashima I., Hikosaka K., Comparative ecophysiology of leaf and canopy photosynthesis, Plant Cell Environ. 18 (1995) 1111-1128.
  53. Tyree M.T., Ewers F.W., The hydraulic architecture of trees and other woody plants, New Phytol. 119 (1991) 345-360.
  54. Vygodskaya N.N., Milyukova I., Varlagin A., Tatarinov F., Sogachev A., Kobak K.I., Desyatkin R., Bauer G., Hollinger D.Y., Kelliher F.M., Schulze E.-D., Leaf conductance and CO2 assimilation of Larix gmelinii growing in an eastern Siberian boreal forest, Tree Physiol. 17 (1997) 607-615 [PubMed].
  55. Waring R.H., Newmann K., Bell J., Efficiency of tree crowns and stemwood production at different canopy leaf densities, Forestry 54 (1981) 129-137.
  56. Webb R.A., Use of the boundary line in the analysis of biological data, J. Hortic. Sci. 47 (1972) 309-319.
  57. Whitehead D., Jarvis P.G., Waring R.H., Stomatal conductance, transpiration, and resistance to water uptake in a Pinus sylvestris spacing experiment, Can. J. For. Res. 14 (1984) 692-700.
  58. Whitehead D., Edwards W.R.N., Jarvis P.G., Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus contorta, Can. J. For. Res. 14 (1984) 940-947.
  59. Willmott C.J., On the evaluation of model performance in physical geography, in: Gaile G.L., Willmott C.J. (Eds.), Spatial Statistics and Models, D. Reidel Publishing Co., Dordrecht, 1984, pp. 443-460.
  60. Wullschleger S.D., Meinzer F.C., Vertessy R.A., A review of whole-plant water use studies in trees, Tree Physiol. 18 (1998) 499-512 [PubMed].