Free Access
Ann. For. Sci.
Volume 61, Number 8, December 2004
Page(s) 847 - 850
References of Ann. For. Sci. 61 847-850
  1. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25 (1997) 3389-3402 [CrossRef] [PubMed].
  2. Azevedo H., Lino-Neto T., Tavares R.M., An improved method for high-quality RNA isolation from needles of adult maritime pine trees, Plant Mol. Biol. Rep. 21 (2003) 333-338.
  3. Borsani O., Valpuesta V., Botella M.A., Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings, Plant Physiol. 126 (2001) 1024-1030 [CrossRef] [PubMed].
  4. Bowler C., Van Camp W., Van Montagu M., Inzé D., Superoxide dismutase in plants, Crit. Rev. Plant Sci. 13 (1994) 199-218.
  5. Dat J.F., Lopez-Delgado H., Foyer C.H., Scott I.M., Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings, Plant Physiol. 116 (1998) 1351-1357 [CrossRef] [PubMed].
  6. Dempsey D.A., Shah J., Klessig D.F., Salicylic acid and disease resistance, Crit. Rev. Plant Sci. 18 (1999) 547-575 [CrossRef].
  7. Doyle J.J., Gaut B.S., Evolution of genes and taxa: a primer, Plant Mol. Biol. 42 (2000) 1-23 [CrossRef] [PubMed].
  8. Emanuelsson O., Nielsen H., Brunak S., Heijne G., Predicting subcellullar localization of proteins based on their N-terminal amino acid sequence, J. Mol. Biol. 300 (2000) 1005-1016 [CrossRef] [PubMed].
  9. Felsenstein J., PHYLIP - Phylogeny Inference Package (Version 3.2), Cladistics 5 (1989) 164-166.
  10. Fodor J., Gullner G., Ádám A.L., Barna B., Komives T., Király Z., Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco. Role in systemic acquired resistance, Plant Physiol. 114 (1997) 1443-1451 [PubMed].
  11. Janda T., Szalai G., Tari I., Páldi E., Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants, Planta 208 (1999) 175-180 [CrossRef].
  12. Kanematsu S., Asada K., Superoxide dismutase, in: Fukui T., Soda K. (Eds.), Molecular aspects of enzyme catalysis, VCH Publishers, Tokyo, 1994, pp. 191-210.
  13. Karpinska B., Karlsson M., Schinkel H., Streller S., Süss K.-H., Melzer M., Wingsle G., A novel superoxide dismutase with a high isoelectric point in higher plants. Expression, regulation, and protein localization, Plant Physiol. 126 (2001) 1668-1677 [CrossRef] [PubMed].
  14. Kliebenstein D.J., Rita-Ann Monde R.-A., Last R.L., Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization, Plant Physiol. 118 (1998) 637-650 [CrossRef] [PubMed].
  15. Rao M.V., Paliyath G., Ormrod D.P., Murr D.P., Watkins C.B., Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2, Plant Physiol. 115 (1997) 137-149 [CrossRef] [PubMed].
  16. Shirasu K., Nakajima H., Rajasekhar V.K., Dixon R.A., Lamb C., Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms, Plant Cell 9 (1997) 261-270 [CrossRef] [PubMed].