Free Access
Ann. For. Sci.
Volume 62, Number 5, July-August 2005
Page(s) 455 - 465
References of Ann. For. Sci. 62 455-465
  1. Alía R., Gil L., Pardos J.A., Performance of 43 Pinus pinaster provenances on 5 locations in central Spain, Silvae Genet. 44 (1995) 75-81.
  2. Alía R., Moro J., Denis J.B., Performance of Pinus pinaster Ait. provenances in Spain: interpretation of the genotype-environment interaction, Can. J. For. Res. 27 (1997) 1548-1559 [CrossRef].
  3. Álvarez González J.G., Ruiz A.D., Rodríguez R.J., Barrio M., Development of ecoregion-based site index models for even-aged stands of Pinus pinaster Ait. in Galicia (north-western Spain), Ann. For. Sci. 62 (2005) 115-127 [EDP Sciences] [CrossRef].
  4. Bará S., Toval G., Calidad de estación del Pinus pinaster Ait. en Galicia, Comunicaciones INIA, nº 24, Madrid, 1983.
  5. Bates D.M., Watts D.G., Nonlinear regression analysis and its applications, John Wiley & Sons, New York, 1988.
  6. Bredenkamp B.V., Gregoire T.G., A Forestry application of Schnute's generalized growth function, For. Sci. 34 (1988) 790-797.
  7. Calama R., Cañadas N., Montero G., Inter-regional variability in site index models for even-aged stands of stone pine (Pinus pinea L.) in Spain, Ann. For. Sci. 60 (2003) 259-269 [EDP Sciences] [CrossRef].
  8. Cañadas N., García C., Montero G., Relación altura-diámetro para Pinus pinea L. en el Sistema central, in: Rojo et al. (Eds.), Actas del Congreso de Ordenación y Gestión Sostenible de Montes, Santiago de Compostela, Tomo I, 1999, pp. 139-153.
  9. Castedo F., Modelo dinámico de crecimiento para las masas de Pinus radiata D. Don en Galicia. Simulación de alternativas selvícolas con inclusión del riesgo de incendio, Ph.D. thesis, Escuela Politécnica Superior, University of Santiago de Compostela, 2004.
  10. Clutter J.L., Fortson J.C., Pienaar L.V., Brister H.G., Bailey R.L., Timber management: a quantitative approach, John Wiley & Sons, New York, 1983.
  11. Curtis R.O., Height-diameter and height-diameter-age equations for second-growth Douglas-fir, For. Sci. 13 (1967) 365-375.
  12. Diéguez-Aranda U., Modelo dinámico de crecimiento para masas de Pinus sylvestris L. procedentes de repoblación en Galicia, Ph.D. thesis, Escuela Politécnica Superior, University of Santiago de Compostela, 2004.
  13. Draper N.R., Smith H., Applied regression analysis, John Wiley & Sons, New York, 1981.
  14. Fang Z., Bailey R.L., Height-diameter models for tropical forests on Hainan Island in Southern China, For. Ecol. Manage. 110 (1998) 315-327.
  15. Ferguson I.S., Leech J.W., Generalized least squares estimation of yield functions, For. Sci. 24 (1978) 27-42.
  16. Hamilton D.A., Edwards B.M., Modelling the probability of individual tree mortality, USDA Forest Service, Research Paper INT-185, Intermountain Forest and Range Experimental station, Ogden, UT, 1976.
  17. Hasenauer H., Burkhart H.E., Amateis R.L., Basal area development in thinned and unthinned loblolly pine plantations, Can. J. For. Res. 27 (1998) 265-271.
  18. Hirsch R.P., Validation samples, Biometrics 47 (1991) 1193-1194 [PubMed].
  19. Huang S., Price D., Titus S.J., Development of ecoregion-based height-diameter models for white spruce in boreal forests, For. Ecol. Manage. 129 (2000) 125-141.
  20. Huang S., Titus S.J., An age-independent individual tree height prediction model for boreal spruce-aspen stands in Alberta, Can. J. For. Res. 24 (1994) 1295-1301.
  21. Huang S., Titus S.J., Wiens D.P., Comparison of nonlinear height-diameter functions for major Alberta tree species, Can. J. For. Res. 22 (1992) 1297-1304.
  22. Huang S., Yang Y., Wang Y., A critical look at procedures for validating growth and yield models, in: Amaro A., Reed D., Soares P. (Eds.), Modelling Forest Systems, CAB International, Wallingford, Oxfordshire, UK, 2003, pp. 271-293.
  23. Judge G.G., Carter R., Griffiths W.E., Lutkepohl H., Lee T.C., Introduction to the theory and practice of econometrics, John Wiley & Sons, New York, 1988.
  24. Khattree R., Naik D.N., Applied multivariate statistics with SAS software, 2nd ed., SAS Institute Inc., Cary, North Carolina, 1999.
  25. Knoebel B.R., Burkhart H.E., Beck B.E., A growth and yield model for thinned stands of yellow-poplar, For. Sci. Monogr. 27, 1986.
  26. Kozak A., Kozak R., Does cross-validation provide additional information in the evaluation of the regression models? Can. J. For. Res. 33 (2003) 976-987 [CrossRef].
  27. Larsen D.R., Hann D.W., Height-diameter equations for seventeen tree species in southwest Oregon, Oreg. State. Univ. For. Res. Lab. 46, 1987.
  28. Leduc D.J., Goelz J.C., Personal communication, 2004.
  29. Lei Y., Modelling forest growth and yield of Eucalyptus globulus Labill. in central-interior Portugal, Ph.D. thesis, Universidade de Trás-os-Montes e Alto Douro, 1998 (unpublished).
  30. Lei Y., Parresol B.R., Remarks on height-diameter modelling, Research Note SRS-10, USDA Forest Service, Southern Research Station, Asheville, North Carolina, 2001.
  31. López Sánchez C.A., Gorgoso J.J., Castedo F., Rojo A., Rodríguez R., Álvarez González J.G., Sánchez Rodríguez F., A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain), Ann. For. Sci. 60 (2003) 237-245 [EDP Sciences] [CrossRef].
  32. Myers R.H., Classical and modern regression with applications, 2nd ed., Duxbury Press, Belmont, California, 1990.
  33. Parresol B.R., Modeling multiplicative error variance: An example predicting tree diameter from stump dimensions in baldcypress, For. Sci. 39 (1993) 670-679.
  34. Parresol B.R., Additivity of nonlinear biomass equations, Can. J. For. Res. 31 (2001) 865-878 [CrossRef].
  35. Parresol B.R., Lloyd F.T., The stochastic tree modelling approach used to derive tree lists for the GIS/CISC identified stands at the Savannah River Site, Internal Report, USDA Forest Service, Southern Research Station, Asheville, North Carolina, 2004.
  36. Peng C., Nonlinear height-diameter models for nine boreal forest tree species in Ontario, Ministry of Natur. Resour., Ontario For. Res. Inst., OFRI-Rep. 155, 1999.
  37. Peng C., Developing and validating nonlinear height-diameter models for major tree species of Ontario's boreal forest, North. J. Appl. For. 18 (2001) 87-94.
  38. Peng C., Zhang L., Huang S., Zhou X., Parton J., Woods M., Developing ecoregion-based height-diameter models for jack pine and black spruce in Ontario, Ministry of Natur. Resour., Ontario For. Res. Inst., OFRI-Rep. 159, 2001.
  39. Pienaar L.V., Shiver B.D., Basal area prediction and projection equations for pine plantations, For. Sci. 32 (1986) 626-636.
  40. Pillsbury N.H., McDonald P.M., Simon V., Reliability of tanoak volume equations when applied to different areas, West. J. Appl. For. 10 (1995) 72-78.
  41. Richards F.J., A flexible growth function for empirical use, J. Exp. Bot. 10 (1959) 290-300.
  42. SAS Institute Inc., SAS/STAT User's Guide, Release 8.2, Cary, North Carolina, 2000.
  43. Schnute J., A versatile growth model with statistically stable parameters, Can. J. Fish. Aquatic. Sci. 38 (1981) 1128-1140.
  44. Schröeder J., Álvarez González J.G., Comparing the performance of generalized diameter-height equations for maritime pine in Northwestern Spain, Forstw. Cbl. 120 (2001) 18-23.
  45. Sharma M., Zhang S.Y., Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana, Scand. J. For. Res. 19 (2004) 442-451 [CrossRef].
  46. Short E.A., Burhart H.E., Predicting crown-height increment for thinned and unthinned loblolly pine plantations, For. Sci. 38 (1992) 594-610.
  47. Soares P., Tomé M., Height-diameter equation for first rotation eucalypt plantations in Portugal, For. Ecol. Manage. 166 (2002) 99-109.
  48. Stage A.R., How forest models are connected to reality: evaluation criteria for their use in decision support, Can. J. For. Res. 33 (2003) 410-421 [CrossRef].
  49. Staudhammer C., LeMay V., Height prediction equations using diameter and stand density measures, For. Chron. 76 (2000) 303-309.
  50. Temesgen H., Gadow K.v., Generalized height-diameter models-an application for major tree species in complex stands of interior British Columbia, Eur. J. For. Res. 123 (2004) 45-51.
  51. Vega P., Vega G., González M., Rodríguez A., Mejora del Pinus pinaster Ait. en Galicia, in: Silva Pando J. (Ed.), I Congreso Forestal Español, Vol. 2, 1993, pp. 129-134.
  52. West P.W., Application of regression analysis to inventory data with measurements on successive occasions, For. Ecol. Manage. 71 (1995) 227-234.
  53. Xunta de Galicia, O monte galego en cifras, Consellería de Medio Ambiente, Santiago de Compostela, 2001.
  54. Xunta de Galicia, Anuario de estatística agraria 2000, Santiago de Compostela, 2002.
  55. Yang R.C., Kozak A., Smith J.H., The potential of Weibull-type functions as a flexible growth curve, Can. J. For. Res. 8 (1978) 424-431.
  56. Yang Y., Monserud R., Huang S., An evaluation of diagnostic tests and their roles in validating forest biometric models, Can. J. For. Res. 34 (2004) 619-629 [CrossRef].
  57. Zeide B., Accuracy of equations describing diameter growth, Can. J. For. Res. 19 (1989) 1283-1286.
  58. Zeide B., Vanderschaaf C., The effect of density on the height-diameter relationship. In: Outcalt Kenneth W. (Ed.), Proc. 11th biennial southern silvicultural research conference, Gen. Tech. Rep. Southern Research Station-XX, Asheville, North Carolina, 2001, pp. 453-456.
  59. Zhang L., Cross-validation of non-linear growth functions for modelling tree height-diameter relationships, Ann. Bot. 79 (1997) 251-257 [CrossRef].
  60. Zhang L., Peng L., Huang S., Zhou X., Development and evaluation of ecoregion-based tree height-diameter models for jack pine in Ontario, For. Chron. 78 (2002) 530-538.
  61. Zhang S., Amateis R., Burkhart H.E., The influence of thinning on tree height and diameter relationships in loblolly pine plantations, South. J. Appl. For. 21 (1997) 199-205.