Free Access
Issue
Ann. For. Sci.
Volume 62, Number 8, December 2005
Page(s) 911 - 923
DOI https://doi.org/10.1051/forest:2005082
Published online 15 December 2005
References of Ann. For. Sci. 62 911-923
  1. Brouwer R., Functional equilibrium - Sense or nonsense? Neth. J. Agric. Sci. 31 (1983) 335-348.
  2. Colin-Belgrand M., Dambrine E., Bienaime S., Nys C., Turpault M.P., Influence of tree roots on nitrogen mineralization, Scand. J. Forest Res. 18 (2003) 260-268.
  3. Corre M.D., Beese F.O., Brumme R., Soil nitrogen cycle in high nitrogen deposition forest: Changes under nitrogen saturation and liming, Ecol. Appl. 13 (2003) 287-298.
  4. Friend A.D., Parameterisation of a global daily weather generator for terrestrial ecosystem modelling, Ecol. Model. 109 (1998) 121-140 [CrossRef].
  5. Hendricks J.J., Aber J.D., Nadelhoffer K.J., Hallett R.D., Nitrogen controls on fine root substrate quality in temperate forest ecosystems, Ecosystems 3 (2000) 57-69 [CrossRef].
  6. Jalkanen A., Mäkipää R., Ståhl G., Lehtonen A., Petersson H., Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors, Ann. For. Sci. 62 (2005) 845-851.
  7. Jenkinson D.S., The turnover of organic-carbon and nitrogen in Soil, Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 329 (1990) 361-368.
  8. Karjalainen T., Schuck A., Introduction, in: Karjalainen T., Schuck A. (Eds.), Causes and Consequences of Forest Growth Trends in Europe - Results of the RECOGNITION Project, Chapter 1, Leiden, Brill, Leiden (in press).
  9. Kramer K., Mohren G., Long-term effects of climate change on carbon budgets of forests in Europe, in: Final report of EU-funded project Long-term regional effects of climate change on European forests: impact assessment and consequences for carbon budgets (LTEEF-II, ENV4-CT97-0577) (2001).
  10. Medlyn B.E., Jarvis P.G., Design and use of a database of model parameters from elevated CO2 experiments, Ecol. Model. 124 (1999) 69-83 [CrossRef].
  11. Oijen M.V., Ågren G., Chertov O. et al., Application of process-based models to explain and predict changes in European forest growth, in: Karjalainen T., Schuck A. (Eds.), Causes and Consequences of Forest Growth Trends in Europe - Results of the RECOGNITION Project, Chapter 3.2, Leiden, Brill, Leiden (in press).
  12. Oijen M.V., Ågren G., Chertov O. et al., Evaluation of past and future changes in European forest growth by means of four process-based models, in: Karjalainen T., Schuck A. (Eds.), Causes and Consequences of Forest Growth Trends in Europe - Results of the RECOGNITION Project, Chapter 4.4, Leiden, Brill, Leiden (in press).
  13. Oijen M.V., Prietzel J., Ågren G. et al., A comparison of empirical and process-based modelling methods for analysing changes in European forest growth, in: Karjalainen T., Schuck A. (Eds.), Causes and Consequences of Forest Growth Trends in Europe - Results of the RECOGNITION Project, Chapter 5.1, Leiden, Brill, Leiden (in press).
  14. Penman J.O., IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry, IGES, Hayama, 2003.
  15. Ragab R., Finch J., Harding R., Estimation of groundwater recharge to chalk and sandstone aquifers using simple soil models, J. Hydrol. 190 (1997) 19-41 [CrossRef].
  16. Spiecker H. et al., Growth Trends in European Forests, EFI Research Report 5, Springer, 1996.
  17. Thornley J.H.M., A transport-resistance model of forest growth and partitioning, Ann. Bot. 68 (1991) 211-226.
  18. Thornley J.H.M., Cannell M.G.R., Nitrogen relations in a forest plantation-soil organic-matter ecosystem model, Ann. Bot. 70 (1992) 137-151.
  19. Thornley J.H.M., Cannell M.G.R., Temperate forest responses to carbon dioxide, temperature and nitrogen: A model analysis, Plant Cell Environ. 19 (1996) 1331-1348.
  20. Valentini R., Matteucci G., Dolman A.J. et al., Respiration as the main determinant of carbon balance in European forests, Nature 404 (2000) 861-865 [CrossRef] [PubMed].
  21. Wang Y.P., Polglase P.J., Carbon balance in the tundra, Boreal forest and humid tropical forest during climate-change - Scaling-up from leaf physiology and soil carbon dynamics, Plant Cell Environ. 18 (1995) 1226-1244.
  22. Webb R.S., Rozenweig C.E., Levine E.R., Global Soil Particle Size Properties. Digital raster data on a 1 degree geographic 180 × 360 grid, in: Kineman J.J., Ohrenschall M.A. (Eds.), Global Ecosystems Database Ver 1.0, 1.0 ed, Boulder, United States Department of Commerce, Boulder, 1992.