Free Access
Issue
Ann. For. Sci.
Volume 64, Number 3, April-May 2007
Page(s) 287 - 299
DOI https://doi.org/10.1051/forest:2007006
Published online 11 April 2007
References of  Ann. For. Sci. 64 (2007) 287-299
  1. Agee J., The influence of forest structure on fire behavior, in: Proceedings of the 17th Annual Forest Vegetation Management Conference, January 16-18, Redding, California, 1996, pp. 52-68.
  2. Albini F.A., Wildland fires, American Scientist 72 (1984) 590-597.
  3. Albini F.A., A model for fire spread in wildland fuels by radiation, Combust. Sci. Technol. 42 (1985) 229-258.
  4. Albini F.A., Wildland fire spread by radiation - a model including fuel cooling by natural convection, Combust. Sci. Technol. 45 (1985) 101-113.
  5. Albini F.A., Stocks B.J., Predicted and observed rates of spread of crown fires in immature Jack pine, Combust. Sci. Technol. 48 (1986) 65-76.
  6. Alexander M.E., Help with making crown fire hazard assessments, in: Fischer W.C., Arno S.F. (Eds.), Protecting people and homes from wildfire in the Interior West: Proceedings of the Symposium and Workshop, 1988 October 6-8, Missoula, USDA, Forest Service, Intermountain Research Station, General Technical Report INT-251, 1988, pp.147-156.
  7. Alexander M.E., Crown fire thresholds in exotic pine plantations in Australasia, Ph.D. thesis, Australian National University, Canberra, Australia, 1998, 228 p.
  8. Alexander M.E., Fire behaviour as a factor in forest and rural fire suppression, Forest Research, Rotorua, in association with the New Zealand Fire Service Commission and National Rural Fire Authority, Wellington, Forest Research Bulletin No. 197, Forest and Rural Fire Scientific and Technical Series, Report No. 5, 2000, 28 p.
  9. Alexander M.E., Stefner C.N., Mason J.A., Stocks B.J., Hartley G.R., Maffey M.E., Wotton B.M., Taylor S.W., Lavoie N., Dalrymple G.N., Characterizing the jack pine-black spruce fuel complex of the International Crown Fire Modelling Experiment (ICFME), Natural Resources Canada, Forestry Service, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-393, 2004, 49 p.
  10. Anderson H.E., Aids to determining fuel models for estimating fire behavior, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-122, Ogden, Utah, 1982, 22 p.
  11. Andrews P.L., BEHAVE: fire behavior prediction and fuel modeling system-BURN subsystem part I, USDA, Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report, INT-260, Ogden, Utah, 1986, 130 p.
  12. Andrews P.L., Bevins C.D., Seli R.C., BehavePlus fire modeling system, version 3.0: User's Guide, USDA, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-106, Ogden, Utah, 2005, 142 p.
  13. Baldwin V.C. Jr., Peterson K.D., Burkhart H.E., Amatais R.L., Dougherty P.M., Equation for estimating loblolly pine branch and foliage weight and surface area distributions, Can. J. For. Res. 27 (1997) 918-927 [CrossRef].
  14. Barbero M., Loisel R., Quézel P., Richardson D.M., Romane F., Pines of the Mediterranean Basin, in: Richardson D.M. (Ed.), Ecology and biogeography of Pinus, Cambridge University Press, Cambridge, 1998, pp 153-170.
  15. Brown J.K., Weight and Density of Crowns of Rocky Mountains Conifer, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-197, Ogden, Utah, 1978, 56 p.
  16. Burgan R.E., Rothermel R.C., BEHAVE: Fire prediction and fuel modeling system-FUEL subsystem, USDA Forest Service General Technical Report INT-167, Ogden, Utah, 1984, 126 p.
  17. Butler B.W., Finney M.A., Andrews P.L., Albini F.A., A radiation driven model for crown fire spread, Can. J. For. Res. 34 (2004) 1588-1599 [CrossRef].
  18. Byram G.M., Combustion of forest fuels, in: Davis K.P. (Ed.), Forest fire: control and use, New York, McGraw Hill Book Co, 1959, pp. 61-89.
  19. Call P., Albini F.A., Aerial and surface consumption in crown fires, Int. J. Wildl. Fire 7 (1997) 259-264.
  20. Cruz M.G., Modeling the initiation and spread of crown fires, M. Sci. thesis, University of Montana, Missoula, 1999, 162 p.
  21. Cruz M.G., Ignition of crown fuels above a spreading surface fire, Ph.D. dissertation, University of Montana, Missoula, 2004, 126 p.
  22. Cruz M.G., Alexander M.E., Wakimoto R.H., Predicting crown fire behavior to support forest fire management decision making, in: Viegas D.X. (Ed.), Forest fire research and wildland fire safety, Proceedings of the IV International Conference on Forest Fire Research, Millpress Scientific Publications, Rotterdam, 2002, pp. 1-10.
  23. Cruz M.G., Alexander M.E., Wakimoto R.H., Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America, Int. J. Wildl. Fire 12 (2003) 39-50.
  24. Cruz M.G., Alexander M.E., Wakimoto R.H., Modeling the likelihood of crown fire occurrence in conifer forest stands, For. Sci. 50 (2004) 640-658.
  25. Cruz M.G., Alexander M.E., Wakimoto R.H., Development and testing of models for predicting crown fire rate of spread in conifer forest stands, Can. J. For. Res. 35 (2005) 1626-1639 [CrossRef].
  26. Dimitrakopoulos A.P., PYROSTAT - a computer program for forest fire data inventory and analysis in Mediterranean countries, Environ. Model. Softw. 16 (2001) 351-359 [CrossRef].
  27. Dimitrakopoulos A.P., Mediterranean fuel models and potential fire behavior in Greece, Int. J. Wildl. Fire 11 (2002) 127-130.
  28. Dimitrakopoulos A.P., Panov P.I., Pyric properties of some dominant Mediterranean vegetation species, Int. J. Wildl. Fire 10 (2001) 23-27.
  29. Dimitrakopoulos A.P., Dritsa S., Novel nomographs for fire behavior prediction in Mediterranean and submediterranean vegetation types, Forestry 76 (2003) 479-490 [CrossRef].
  30. Dupuy J., Morvan D., Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model, Int. J. Wildl. Fire 14 (2005) 141-151.
  31. Finney M.A., FARSITE: Fire area simulator-model development and evaluation, USDA, Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-4, Ogden, Utah, 1998, 47 p.
  32. Forestry Canadian Fire Danger Group, Development and Structure of the Canadian Forest Fire Behavior Prediction System, Forestry Canada, Science and Sustainable Development Directorate, Information Report ST-X-3, Ottawa, Canada, 1992, 65 p.
  33. Fule P.Z., Covington W.W., Smith H.B., Springer J.D., Heinlein T.A., Huisinga K.D., Moore M.M., Comparing ecological restoration alternatives: Grand Canyon, Arizona, For. Ecol. Manage. 170 (2002) 19-41 [CrossRef].
  34. Gonzalez J.R., Pukkala T., Palahi M., Optimizing the management of Pinus sylvestris L. stand under risk of fire in Catalonia (north-east of Spain), Ann. Sci. For. 62 (2005) 493-501.
  35. Gonzalez J.R., Palahi M., Trasobares A., Pukkala T., A fire probability model for forest stands in Catalonia (north-east Spain), Ann. For. Sci. 63 (2006) 169-176 [EDP Sciences] [CrossRef].
  36. Graham R.T., Hayman fire case study, USDA, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-114, Fort Collins, 2003, 396 p.
  37. Grigal D.F., Kernik L.K., Generality of black spruce biomass estimation equations, Can. J. For. Res. 14 (1984) 486-490.
  38. Grishin A. M., Perminov V. A., Mathematical modeling of the ignition of tree crowns, Combust. Explos. Shock Waves 34 (1998) 378-376.
  39. Johnson A., Woodard P., Titus S., Lodgepole pine and white spruce fuel weights predicted from height and crown width, Can. J. For. Res. 19 (1989) 527-530.
  40. Johnson A., Woodard P., Titus S., Lodgepole pine and white spruce crown fuel weights predicted from diameter at breast height, For. Chron. 66 (1990) 596-599.
  41. Johnson E.A., Fire and vegetation dynamics: Studies from the North American boreal forest, Cambridge University Press, 1992, 129 p.
  42. Keane R.E., Burgan R., Wangtendonk J., Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling, Int. J. Wildl. Fire 10 (2001) 301-319.
  43. Keane R.E., Reinhardt E.D., Scott J., Gray K., Reardon J., Estimating forest canopy bulk density using six indirect methods, Can. J. For. Res. 35 (2005) 724-739 [CrossRef].
  44. Keyes C.R., O'Hara K.L., Quantifying stand targets for silvicultural prevention of crown fires, West. J. Appl. For. 17 (2002) 101-109.
  45. Kilgore B.M., Sando R.W., Crown fire potential in a sequoia forest after prescribed burning, For. Sci. 21 (1975) 83-87.
  46. Kittredge J., Estimation of the amount of foliage of trees and stands, J. For. 42 (1944) 905-912.
  47. Lemmon P.E., A spherical densiometer for estimating forest overstory density, For. Sci. 1 (1956) 314-320.
  48. Linn R.R., Transport model for prediction of wildfire behavior, Los Alamos National Laboratory, Scientific Report, 1997, 195 p.
  49. Linn R.R., Reisner J., Colman J.J., Winterkamp J., Studying wildfire behavior using FIRETEC, Int. J. Wildland Fire 11 (2002) 233-246 [CrossRef]
  50. Linn R.R., Winterkamp J., Colman J.J., Edminster, C., Bailey J.D., Modeling interactions between fire and atmosphere in discrete element fuel beds, Int. J. Wildl. Fire 14 (2005) 37-48.
  51. Long J.N., Smith F.W., Leaf-area sapwood area relations of lodgepole pine as influenced by stand density and site index, Can. J. For. Res. 18 (1988) 247-250.
  52. McAlpine R.S., Hobbs M.W., Predicting the height to live crown base in plantation of four boreal forest species, Int. J. Wildl. Fire 4 (1994) 103-106.
  53. Mead B.R., Phytomass in southeast Alaska, US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Research Paper, PNW-RP-505, Portland, OR, 1998, 48 p.
  54. Mitsopoulos I.D., Crown fire analysis and management in Pinus halepensis forests of Greece, Ph.D. dissertation, Aristotle University of Thessaloniki, 2005, 232 p. (in Greek, with English abstract).
  55. Moeur M., Crown width and foliage weight of northern Rocky Mountain conifers, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, Research Paper INT-283, 1981, 14 p.
  56. Monserud R.A., Marshall J.D., Allometric crown relations in three northern Idaho conifer species, Can. J. For. Res. 29 (1999) 521-535 [CrossRef].
  57. Moreno J.M., Oechel W.C., The role of fire in Mediterranean-type ecosystems, Springer-Verlag, New York, NY, 1994.
  58. Norusis M.J., SPSS professional statistics, SPSS Inc., Chicago, 1997, 376 p.
  59. Otrmar R.D., Vilnanek R.E., Wright C.S., Stereo photoseries for quantifying natural fuels, Vol. I: Mixed conifer with mortality, Western Juniper, Sagebrush and grasslands types in the Interior Pacific Northwest, PMS 830, NFES 2580, Boise, Idaho: National Wildfire Coordinating Group, National Interagency Fire Center, 1998, 73 p.
  60. Pastor E., Zarate L., Planas E., Arnaldos J., Mathematical models and calculation systems for the study of wildland fire behavior, Prog. Energy Combust. Sci. 29 (2003) 139-153 [CrossRef].
  61. Perez B., Cruz A., Fernandes-Gonzales F., Moreno J.M., Effects of the recent land-use history on the postfire vegetation of an uplands in Cental Spain, For. Ecol. Manage. 182 (2003) 273-283 [CrossRef].
  62. Perry D.A., Jing H., Youngblood A., Oetter D.R., Forest structure and fire susceptibility in volcanic landscapes of the eastern high Cascades, Oregon, Conserv. Biol. 18 (2004) 913-926.
  63. Porterie B., Loraud J.C., Bellemare I.O., Consalvi J.L., A physically based model of the onset of crowning, Combust. Sci. Technol. 175 (2003) 1109-1141 [CrossRef].
  64. Quezel P., Taxonomy and biogeography of Mediterranean pine species, in: Ne'eman G., Trabaud L. (Eds.), Ecology, biogeography and management of Pinus halepensis and Pinus brutia forest ecosystems in the Mediterranean Basin, Backhuys Publishers, Leiden, 2000, pp. 1-12.
  65. Riano D., Meier E., Allgower B., Chuevico E., Ustin S., Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling, Remote Sens. Environ. 86 (2003) 177-186 [CrossRef].
  66. Riano D., Chuevico E., Condes S., Gonzales-Matesanz J., Ustin S., Generation of crown bulk density for Pinus sylvestris L. from lidar, Remote Sens. Environ. 92 (2004) 345-352 [CrossRef].
  67. Rothermel R.C., A mathematical model for predicting fire spread in wildland fuels, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115, Ogden, Utah, 1972, 40 p.
  68. Rothermel R.C., Predicting behavior and size of crown fires in the Northern Rocky Mountains, USDA, Forest Service Intermountain Research Station, Research Paper INT-438, 1991, 46 p.
  69. Sando R., Wick C., A method of evaluating crown fuels in boreal stands, USDA, Forest Service, North Central Forest Experiment Station, Research Paper NC-84, 1972, 26 p.
  70. Scott J.H., Reinhardt E.D., Assessing crown fire potential by linking models of surface and crown fire potential, USDA, Forest Service, Rocky Mountain Research Station, Research Paper RMRS-29, Fort Collins, USA, 2001, 59 p.
  71. Scott J.H., Reinhardt E.D., Estimating canopy fuels in conifer forests, Fire Management Today 62 (2002) 45-50.
  72. Stephens S.L., Evaluation of the effects of silvicultural and fuels treatments on potential fire behavior in Sierra Nevada mixed conifer forests, For. Ecol. Manage. 105 (1998) 21-35 [CrossRef].
  73. Stocks B.J., Black spruce fuel weights in northern Ontario, Can. J. For. Res. 10 (1980) 498-501.
  74. Stocks B.J., Fire behavior in immature jack pine, Can. J. For. Res. 17 (1987) 80-86.
  75. Stocks B.J., Fire behavior in mature jack pine, Can. J. For. Res. 19 (1989) 783-790.
  76. Stocks B.J., Alexander M.E., Wotton B.M., Stefner C.N., Flannigan M.D., Taylor S.W., Lavoie N., Mason J.A., Hartley G.R., Maffey M.E., Dalrymple G.N., Blake T.W., Cruz M.G., Lanoville R.A., Crown fire behaviour in a northern jack pine-black spruce forest, Can. J. For. Res. 34 (2004) 1548-1560 [CrossRef].
  77. Terradas J., Pinol J., Lloret F., Risk factors in wildfires along the Mediterranean coast of the Iberian Peninsula, in: Trabaud L. (Ed.), Fire management and landscape ecology, International Association of Wildland Fire, Fairfield, Washington, USA, 1998, pp. 297-304.
  78. Thomas P.H., The size of flames from natural fires, in: Proceedings of 9th International Symposium on Combustion Processes, Academic Press, New York, 1963, pp. 844-859.
  79. Van Wagner C.E., Conditions of the start and spread of crown fires, Can. J. For. Res. 7 (1977) 23-34.
  80. Van Wagner C.E., Prediction of crown fire behavior in conifer stands, in: MacIver D.C., Auld H., Whitewood R. (Eds.), Proceedings at the 10th Conference on Fire and Forest Meteorology, Ottawa, Canada, 1989, pp. 207-212
  81. Van Wagner C.E., Prediction of crown fire behavior in two stands of jack pine, Can. J. For. Res. 23 (1993) 442-449.
  82. Williams D.F., Influence of quantity, distribution and moisture content of forest fuels on fire management of radiata pine plantations, Master of Science thesis, University of Melbourne, Victoria, Australia, 1977, 188 p.
  83. Wilson J., Baker P., Mitigating fire risk to late-successional forest reserves on the east slope of the Washington Cascade Range, For. Ecol. Manage. 110 (1998) 59-75 [CrossRef].
  84. Xanthopoulos G., Development of a wildland crown fire initiation model, Ph.D. thesis, University of Montana, Missoula, 1990, 152 p.