Free Access
Ann. For. Sci.
Volume 65, Number 3, May 2008
Article Number 306
Number of page(s) 13
Published online 17 April 2008
References of  Ann. For. Sci. 65 (2008) 306
  1. Addington R.N., Mitchell R.J., Oren R., Donovan L.A., Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris, Tree Physiol. 24 (2004) 561-569 [PubMed].
  2. Aranda I., Gil L., Pardos J.A., Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak Quercus petraea (Matt.) Liebl. in South Europe, Plant Ecol. 179 (2005) 155-167 [CrossRef].
  3. Becker P., Tyree M.T., Tsuda M., Hydraulic conductance of angiosperms versus conifers: similar transport sufficiency at the whole-plant level, Tree Physiol. 19 (1999) 445-452 [PubMed].
  4. Bigler C., Bräker O.U., Bugmann H., Dobbertin M., Rigling A., Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland, Ecosystems 9 (2006) 330-343 [CrossRef].
  5. Bréda N., Granier A., Barataud F., Moyne C., Soil water dynamics in an oak stand. I. Soil moisture, water potentials and water uptake by roots, Plant Soil 172 (1995) 17-27 [CrossRef].
  6. Bréda N., Huc R., Granier A., Dreyer E., Temperate forest tree and stands under sever drought:a review of ecophysiological responses, adaptation processes and long-term consequences, Ann. Sci. For. 63 (2006) 625-644 [CrossRef].
  7. Cavender-Bares J., Holbrook N.M., Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats, Plant Cell Environ. 24 (2001) 1243-1256 [CrossRef].
  8. Clearwater M.J., Meinzer F.C., Andrade J.L., Goldstein G., Holbrook N.M., Potential erros in measurement of nonuniform sap flow using heat dissipation probes, Tree Physiol. 19 (1999) 681-687 [PubMed].
  9. Cochard H., Bréda N., Granier A., Aussenac G., Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q.robur L.), Ann. Sci. For. 49 (1992) 225-233 [CrossRef].
  10. Cochard H., Cruiziat P., Tyree M.T., Use of positive pressures to establish vulnerability curves, Plant Physiol. 100 (1992) 205-209 [PubMed] [CrossRef].
  11. Cochard H., Cruiziat P., Tyree M.T., Vulnerability of several conifers to air embolism, Tree Physiol. 11 (1992) 73-83 [PubMed].
  12. Corcuera L., Camarero J.J., Sisó S., Gil-Pelegrín E., Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape, Trees- Struct. Funct. 20 (2006) 91-98.
  13. CREAF, Inventari Ecològic i Forestal de Catalunya. Regió Forestal IV., Bellaterra, Spain, 2000.
  14. Damesin C., Rambal S., Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (Quercus pubescens) during a severe summer drought, New Phytol. 131 (1995) 159-167 [CrossRef].
  15. DeLucia E.H., Maherali H., Carey E.V., Climate-driven changes in biomass allocation in pines, Glob. Change Biol. 6 (2000) 587-593 [CrossRef].
  16. Gallart F., Llorens P., Latron J., Regüés D., Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees, Hydrol Earth Syst. Sci. 6 (2002) 527-537.
  17. Granier A., Une nouvelle méthode pur la mesure du flux de sève brute dans le tronc des arbres, Ann. Sci. For. 42 (1985) 193-200 [CrossRef].
  18. Granier A., Loustau D., Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data, Agric. For. Meteorol. 71 (1994) 61-81 [CrossRef].
  19. Himrane H., Camarero J.J., Gil-Pelegrín E., Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea $\times$ Q. pubescens), Trees 18 (2004) 566-575.
  20. Hubbard R.M., Ryan M.G., Stiller V., Sperry J.S., Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine, Plant Cell Environ. 24 (2001) 113-121 [CrossRef].
  21. IPCC, Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, 2001.
  22. Irvine J., Perks M.P., Magnani F., Grace J., The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance, Tree Physiol. 18 (1998) 393-402 [PubMed].
  23. Jalas J., Suominen J., R. L., Atlas Florae Europaeae, in: (Ed.), 1999.
  24. Kolb T.E., Stone J.E., Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest, Tree Physiol. 20 (1999) 1-12.
  25. Latron J., Soler M., Llorens P., Gallart F., Spatial and temporal variability of the hydrological response in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees), Hydrol. Process 25 (2007) 775-787.
  26. Leuzinger S., Zotz G., Asshoff R., Körner C., Responses of deciduous forest trees to severe drought in Central Europe, Tree Physiol. 25 (2005) 641-650 [PubMed].
  27. Lo Gullo M.A., Salleo S., Rosso R., Trifilo P., Drought resistance of 2-year-old saplings of Mediterranean forest trees in the field: Relations between water relations, hydraulics and productivity, Plant Soil 250 (2003) 259-272 [CrossRef].
  28. Martínez-Vilalta J., Piñol J., Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula, For. Ecol. Manage. 161 (2002) 247-256 [CrossRef].
  29. Martínez-Vilalta J., Sala A., Piñol J., The hydraulic architecture of Pinaceae - a review, Plant Ecol. 171 (2004) 3-13 [CrossRef].
  30. Meinzer F.C., Functional convergence in plant responses to the environment, Oecologia 134 (2003) 1-11 [PubMed] [CrossRef].
  31. Nadezhdina N., Cermák J., Nadezhdin V., Heat field deformation method for sap flow measurements, in: Èermák J., Nadezhdina N. (Eds.), 4th International Workshop on Measuring Sap Flow in Intact Plants, IUFRO Publications, Zidlochovice, Czech Republic, 1998, pp. 72-92.
  32. Nardini A., Pitt F., Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture, New Phytol. 143 (1999) 485-493 [CrossRef].
  33. Nardini A., Salleo S., Limitation of stomatal conductance by hydraulic traits: sensing or preventing cavitation? Trees 15 (2000) 14-24 [CrossRef].
  34. Pallardy S.G., Cermák J., Ewers F.W., Kaufmann M.R., Parker W.C., Sperry J.S., Water transport dynamics in trees and stands, in: Smith W.K., Hinckley T.M. (Eds.), Resource physiology of conifers, Academic Press, San Diego, 1995, pp. 301-389.
  35. Perks M.P., Irvine J., J.Grace, Canopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought, Tree Physiol. 22 (2002) 877-883 [PubMed].
  36. Poyatos R., Cermák J., Llorens P., Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens Willd.) and its implications for tree and stand transpiration measurements, Tree Physiol. 27 (2007) 537-548 [PubMed].
  37. Poyatos R., Latron J., Llorens P., Land-use and land cover change after agricultural abandonment. The case of a Mediterranean Mountain Area (Catalan Pyrenees), Mt. Res. Dev. 23 (2003) 52-58.
  38. Richardson L.A., Pressure membrane apparatus: construction and use, Agricultural Engineering 28 (1947) 451-454.
  39. Rubio Esteve C., Hidrodinámica de los suelos de un área de montaña media mediterránea sometida a cambios de uso y cubierta, Ph.D. thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2005, 194 p.
  40. Stenberg P., Linder S., Smolander H., Flower-Ellis J., Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands, Tree Physiol. 14 (1994) 981-995 [PubMed].
  41. Sturm N., Köstner B., Hartung W., Tenhunen J.D., Environmental and endogenous controls on leaf- and stand-level water conductance in a Scots pine plantation, Ann. Sci. For. 55 (1998) 237-253 [CrossRef].
  42. Teixeira-Filho J., Damesin C., Rambal S., Joffre R., Retrieving leaf conductances from sap flows in a mixed mediterranean woodland: a scaling exercise, Ann. Sci. For. 55 (1998) 173-190 [CrossRef].
  43. Tognetti R., Longobucco A., Raschi A., Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy, New Phytol. 139 (1998) 437-447 [CrossRef].
  44. Tognetti R., Longobucco A., Raschi A., Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring, Tree Physiol. 19 (1999) 271-277 [PubMed].
  45. Valentini R., Scarascia Mugnozza G.E., Ehleringer J.R., Hydrogen and carbon isotope ratios of selected species of a Mediterranean macchia ecosystem, Funct. Ecol. 6 (1992) 627-631 [CrossRef].
  46. Villar-Salvador P., Castro-Díez P., Pérez-Rontomé C., Montserrat-Martí G., Stem xylem features in three Quercus (Fagaceae) spp. along a climatic gradient in NE Spain, Trees 12 (1997) 90-96.
  47. Warren J.M., Meinzer F.C., Brooks J.R., Domec J.C., Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests, Agric. For. Meteorol. 130 (2005) 39-58 [CrossRef].
  48. Whitehead D., Jarvis P.G., Coniferous forests and plantations, in: Kozlowski T.T. (Ed.), Water Deficits and Plant Growth, Academic Press, New York, 1981, pp. 49-152.
  49. Zweifel R., Zimmerman L., Newberry D.M., Modelling tree water deficit from microclimate: an approach to quantifying drought water stress, Tree Physiol. 25 (2005) 147-156 [PubMed].