Free Access
Ann. For. Sci.
Volume 65, Number 3, May 2008
Article Number 307
Number of page(s) 9
Published online 17 April 2008
References of  Ann. For. Sci. 65 (2008) 307
  1. AFNOR, French standard NF B 51.007, approved in February 1942, No. 85365, 1985.
  2. Almeras T., Thibaut A., Gril J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees, Trees Struct. Funct. 19 (2005) 457-467.
  3. Aloni R., Vascular differentiation within the plant, in: Roberts L.W., Gahan P.B., Aloni R. (Eds.), Vascular differentiation and plant growth regulators, Springer-Verlag, Berlin, 1988, pp. 39-59.
  4. Arganbright D.G., Bensend D.W., Manwiller F.G., Influence of gelatinous fibers on the shrinkage of silver maple, Wood Sci. 3 (1970) 83-89.
  5. Barefoot A.C., Selected wood characteristics of young yellow-poplar. Part II: Shrinkage of normal and abnormal wood, For. Prod. J. 13 (1963) 443-448.
  6. Bordonné P.-A., Module dynamique et frottement intérieur dans le bois. Mesures sur poutres flottantes en vibrations naturelles, Institut National Polytechnique de Lorraine, Nancy, 1989, 109 p.
  7. Boyd J.D., Relationship between fibre morphology and shrinkage of wood, Wood Sci. Technol. 11 (1977) 3-22 [CrossRef].
  8. Browning B.L., Methods of wood chemistry, Interscience, John Wiley & Sons, New York, 1967.
  9. Chow K.Y., A comparative study of the structure and composition of tension wood in beech (Fagus sylvatica L.), Forestry 20 (1946) 62-77 [CrossRef].
  10. Christensen G.N., Kelsey K.E., Die Geschwindigkeit der Wasserdampfsorption durch Holz, Holz Roh- Werkst. 17 (1959) 178-188 [CrossRef].
  11. Clair B., Gril J., Baba K., Thibaut B., Sugiyama J., Precautions for the structural analysis of the gelatinous layer in tension wood, IAWA J. 26 (2005) 189-195.
  12. Clair B., Ruelle J., Thibaut B., Relationship between growth stresses, mechano-physical properties and proportion of fibres with gelatinous layer in chestnut (Castanea Sativa Mill.), Holzforschung 57 (2003) 189-195 [CrossRef].
  13. Clair B., Thibaut B., Shrinkage of the gelatinous layer of poplar and beech tension wood, IAWA J. 22 (2001) 121-131.
  14. Clair B., Thibaut B., Sugiyama J., On the detachment of the gelatinous layer in tension wood fiber, J. Wood Sci. 51 (2005) 218-221 [CrossRef].
  15. Côté W.A.J., Day A.C., Timell T.E., A contribution to the ultrastructure of tension wood fibers, Wood Sci. Technol. 3 (1969) 257-271 [CrossRef].
  16. Coutand C., Jeronimidis G., Chanson B., Loup C., Comparison of mechanical properties of tension and opposite wood in Populus, Wood Sci. Technol. 38 (2004) 11-24 [CrossRef].
  17. Cronshaw J., Morey P.R., The effect of plant growth substances on the development of tension wood in horizontally inclined stems of Acer rubrum seedlings, Protoplasma 65 (1968) 379-391 [CrossRef].
  18. Dadswell H.E., Wardrop A.B., What is reaction wood?, Aust. For. 13 (1949) 22.
  19. Dadswell H.E., Wardrop A.B., The structure and properties of tension wood, Holzforschung 9 (1955) 97-104 [CrossRef].
  20. Fang C.-H., Clair B., Gril J., Almeras T., Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain, Wood Sci. Technol. 41 (2007) 659-671 [CrossRef].
  21. Fang C.-H., Clair B., Gril J., Liu S.-Q., Growth stresses are highly controlled by the amount of G-layer in poplar tension wood, IAWA J. (2008) in press.
  22. Fang C.-H., Liu S.-Q., Zhu L.-H., Jin S.-X., Wu W.-Q., Comparative study on the effect of fertilization on wood anatomical features of Poplar I-69 (in Chinese), J. A-H.agric. Univ. 29 (2002) 398-402.
  23. Fisher J.B., Stevenson J.W., Occurence of reaction wood in branches of Dicotyledons and its role in tree architecture, Bot. Gaz. 142 (1981) 82-95 [CrossRef].
  24. Fournier M., Chanson B., Thibaut B., Guitard D., Mesure des déformations résiduelles de croissance à la surface des arbres, en relation avec leur morphologie. Observation sur différentes espèces, Ann. Sci. For. 51 (1994) 249-266 [CrossRef].
  25. Fujita M., Saiki H., Harada H., Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibers, Mokuzai Gakkaishi 20 (1974) 147-156.
  26. Furuya N., Takahashi S., Miyazaki M., The chemical compositions of gelatinous layer from the tension wood of Populus euro-americana, Mokuzai Gakkaishi 16 (1970) 26-30.
  27. Jourez B., Riboux A., Leclercq A., Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv. Ghoy), IAWA J. 22 (2001) 133-157.
  28. Jourez B., Riboux A., Leclercq A., Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. Ghoy when subjected to a gravitational stimulus, Can. J. For. Res. 31 (2001) 1676-1683 [CrossRef].
  29. Kaeiser M., Boyce S.G., The relation of gelatinous fibers to wood structure in eastern cottonwood (Populus deltoides Marsh.), Am. J. Bot. 52 (1965) 711-715 [CrossRef].
  30. Kennedy R.W., Fibre lenght of fast and slow grown black cottonwood, For. Chron. 33 (1957) 46-55.
  31. Klason P., Bidrag till narmare kännedom on granvedens kemiska sammansättning, Arkiv för Kemi, Mineralogi och Geologi 3 (1908) 1-20.
  32. Koponen S., Toratti T., Kanerva P., Modelling longitudinal elastic and shrinkage properties of wood, Wood Sci. Technol. 23 (1989) 55-63 [CrossRef].
  33. Koubaa A., Hernandez R., Beaudoin M., Poliquin J., Interclonal, intraclonal, and within-tree variation in fiber length of poplar hybrid clones, Wood Fiber Sci. 30 (1998) 40-47.
  34. Kroll R.E., Ritter D.C., Au K.C., Anatomical and physical properties of Balsam poplar (Populus balsamifera L.) in Minnesota, Wood Fiber Sci. 24 (1992) 13-24.
  35. Kubler H., Growth stresses in trees and related wood properties, For. Abstr. 10 (1987) 62-119.
  36. Lenz O., Le bois de quelques peupliers de culture en Suisse, Ann. Inst. Fed. Rech. For. 30 (1954).
  37. Lowell E.C., Krahmer R.L., Effects of lean in red alder trees on wood shrinkage and density, Wood Fiber Sci. 25 (1993) 2-7.
  38. Morey P.R., Cronshaw J., Induction of tension wood by 2,4-dinitrophenol and auxins, Protoplasma 65 (1968) 393-405 [CrossRef].
  39. Norberg P.H., Meier H., Physical and chemical properties of the gelatinous layer in tension wood fibre of aspen (Populus tremula L.), Holzforschung 20 (1966) 174-178 [CrossRef].
  40. Okuyama T., Yamamoto H., Iguchi M., Yoshida M., Generation process of growth stresses in cell walls II. Growth stresses in tension wood, Mokuzai Gakkaishi 36 (1990) 797-803.
  41. Okuyama T., Yamamoto H., Yoshida M., Hattori Y., Archer R.R., Growth stresses in tension wood: role of microfibrils and lignification, Ann. Sci. For. 51 (1994) 291-300 [CrossRef].
  42. Onaka F., Studies on compression and tension wood, Wood research, Bulletin of the Wood research Institute, Kyoto University, Japan 24 (1949) 1-88.
  43. Panshin A.J., de Zeeuw C., Textbook of Wood Technology, Mc Graw-Hill Book Co., New York, 1980.
  44. Parham R.A., Robinson K.W., Isebrands J.G., Effects of tension wood on Kraft paper from a short-rotation hardwood (Populus Tristis No. 1), Wood Sci. Technol. 11 (1977) 291-303 [CrossRef].
  45. Pilate G., Chabbert B., Cathala B., Yoshinaga A., Leplé J.-C., Laurans F., Lapierre C., Ruel K., Lignification and tension wood, C. R. Biol. 327 (2004) 889-901 [PubMed] [CrossRef].
  46. Ruelle J., Beauchêne J., Thibaut A., Thibaut B., Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species, Ann. For. Sci. 64 (2007) 503-510 [EDP Sciences] [CrossRef].
  47. Ruelle J., Clair B., Beauchêne J., Prevost M.F., Fournier M., Tension wood and opposite wood in 21 tropical rain Forest species. 2. Comparison of some anatomical and ultrastructural criteria, IAWA J. 27 (2006) 329-338.
  48. Saiki H., Ono K., Cell wall organization of gelatinous fibers in tension wood, Bull. Kyoto Univ. For. 42 (1971) 210-220.
  49. Salmén L., Ruvo A.D., A model for the prediction of fiber elasticity, Wood Fiber Sci. 17 (1985) 336-350.
  50. Sassus F., Déformations de maturation et propriétés du bois de tension chez le hêtre et le peuplier : mesures et modèles, in: Thibaut B. (Ed.), Thesis ENGREF en Sciences du bois, Montpellier, 1998.
  51. Scurfield G., Wardrop A.B., The nature of reaction wood. VI. The reaction anatomy of seedlings of woody perennials, Aust. J. Bot. 10 (1962) 93-105 [CrossRef].
  52. Sugiyama K., Okuyama T., Yamamoto H., Yoshida M., Generation process of growth stresses in cell walls: Relation between longitudinal released strain and chemical compostion, Wood Sci. Technol. 27 (1993) 257-262.
  53. Wada M., Okano T., Sugiyama J., Horii F., Characterization of tension and normally lignified wood cellulose in Populus maximo-wiczii, Cellulose 2 (1995) 223-233 [CrossRef].
  54. Wardrop A.B., The nature of reaction wood. V. The distribution and formation of tension wood in some species of Eucalyptus, Aust. J. Bot. 4 (1956) 152-166 [CrossRef].
  55. Wardrop A.B., The reaction anatomy of arborescent angiosperms, in: Zimmermann M.H. (Ed.), The formation of wood in forest tree, Academic Press, New York, 1964, pp. 405-456.
  56. Wardrop A.B., Dadswell H.E., The nature of reaction wood I - The structure and properties of tension wood fibres, Aust. J. Sci. Res. B, Biol. Sci. 1 (1948) 3-16.
  57. Washusen R., Ades P., Evans R., Ilic J., Vinden P., Relationships between density, shrinkage, extractives content and microfibril angle in tension wood from three provenancesof 10-year-old Eucalyptus globulus Labill, Holzforschung 55 (2001) 176-182 [CrossRef].
  58. Washusen R., Ilic J., Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill, Holz Roh- Werkst. 59 (2001) 85-93 [CrossRef].
  59. Washusen R., Ilic J., Waugh G., The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill, Holz Roh- Werkst. 61 (2003) 299-303 [CrossRef].
  60. Yamamoto H., Abe K., Arakawa Y., Okuyama T., Gril J., Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum, J. Wood Sci. 51 (2005) 222-233 [CrossRef].
  61. Zimmermann M.H. (Ed.), The formation of wood in forest trees, Academic Press, New York, 1964.