Free Access
Issue
Ann. For. Sci.
Volume 65, Number 5, July-August 2008
Article Number 501
Number of page(s) 14
DOI https://doi.org/10.1051/forest:2008022
Published online 04 July 2008
References of  Ann. For. Sci. 65 (2008) 501
  1. Amaro A., Reed D., Tomé M., and Themido I., 1998. Modeling dominant height growth: Eucalyptus plantations in Portugal. For. Sci. 44: 37-46.
  2. Adamakopoulos T., Gatzogiannis S., and Poirazidis K., 1995. Special environmental study for the Dadia Forest Reserve, WWF Greece, Athens, 440 p. (in Greek).
  3. Apatsidis D.L., 1995. Construction of normal yield tables for oak. In: Greek Forestry Society (Ed.), Utilization of Forest Resources, Proceedings of the 7th Greek Forestry Conference, Karditsa 11-13 October 1994, pp. 317-333.
  4. Calama R. and Montero G., 2005. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach. Silva Fenn. 39: 37-54.
  5. Chatziphilippidis G. and Spyroglou G., 2006. Modeling the growth of Quercus frainetto in Greece. In: Hasenauer H. (Ed.), Sustainable Forest Management - Growth Models for Europe, Springer, Berlin - Heidelberg, pp. 373-393.
  6. Cieszewski C.J. and Bailey R.L., 2000. Generalized algebraic difference approach: Theory based derivation of dynamic equations with polymorphism and variable asymptotes. For. Sci. 46: 116-126.
  7. Clutter J.L., Forston J.C., Piennar L.V., Brister G.H., and Bailey R.L., 1983. Timber management-a quantitative approach, Wiley, New York, p. 333.
  8. Eid T. and Tuhus E., 2001. Models for individual tree mortality in Norway. For. Ecol. Manage. 154: 69-84 [CrossRef].
  9. Fox J.C., Ades P.K., and Bi H., 2001. Stochastic structure and individual-tree growth models. For. Ecol. Manage. 154: 261-276 [CrossRef].
  10. González J.R., Trasobares A., Palahí M., and Pukkala T., 2007. Predicting tree survival in burned forests in Catalonia (North-East Spain) for strategic forest planning. Ann. For. Sci. 64: 733-742 [EDP Sciences] [CrossRef].
  11. Gatzojannis S. and Grigoriadis N., 2000. Ein polymorphes Höhenmodell für Quercus frainetto Bestände im Waldgebiet Arnäa (Griechenland). Allg. Forst-u. J. -Ztg. 171: 67-74.
  12. Hynynen J., 1995. Predicting the growth response to thinning for Scots pine stands using individual-tree growth models. Silva Fenn. 29: 225-246.
  13. Kati V., Devillers P., Dufrêne M., Legakis A., Vokou D., and Lebrun P., 2004. Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conserv. Biol. 18: 667-675.
  14. Kossenakis T.T., 1939. Yield tables of coppice stands of Quercus frainetto, Fagus sylvatica and Castanea sativa, Forest Research Publications Bureau, Ministry of Agriculture, Athens, 56 p. (in Greek).
  15. McDill M.E. and Amateis R.L., 1992. Measuring forest site quality using the parameters of a dimensionally compatible height growth function. For. Sci. 38: 409-429.
  16. Palahí M. and Grau Corbí J., 2003. Preliminary site index model and individual-tree growth and mortality models for black pine (Pinus nigra Arn.) in Catalonia (Spain). Investig. Agrar. Sist. Recur. For. 12: 137-148.
  17. Palahí M. and Pukkala T., 2003. Optimising the management of Scots pine (Pinus sylvestris L.) stands in Spain based on individual-tree models. Ann. For. Sci. 60: 105-114 [EDP Sciences] [CrossRef].
  18. Palahí M., Pukkala T., Miina J., and Montero G., 2003. Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann. For. Sci. 60: 1-10 [EDP Sciences] [CrossRef].
  19. Palahí M., Tomé M., Pukkala T., Trasobares A., and Montero G., 2004. Site-index model for Pinus sylvestris in north-east Spain. For. Ecol. Manage. 187: 35-47 [CrossRef].
  20. Peschel W., 1938. Die mathematischen Methoden zur Herleitung der Wachstumsgesetze von Baum und Bestand und die Ergebnisse ihrer Anwendung. Tharandter Forstl. Jahrb. 89: 169-247.
  21. Pienaar L.V. and Turnbull K.J., 1973. The Chapman-Richards generalization of Von Bertalanffy's growth model for basal area growth and yield in even-aged stands. For. Sci. 19: 2-22.
  22. Pita P.A., 1964. La calidad de la estación en las masas de Pinus sylvestris de la Península Ibérica. Anales del Instituto Forestal de Investigaciones y Experiencias 9: 5-28.
  23. Poirazidis K., Skartsi T., and Catsadorakis G., 2002. Monitoring plan for the protected area of Dadia-Lefkimi-Soufli Forest, WWF Greece, Athens, 126 p.
  24. Poirazidis K., Goutner V., Skartsi T., and Stamou N., 2004. Modelling nesting habitat as a conservation tool for the Eurasian black vulture (Aegypius monachus) in Dadia Nature Reserve, northeastern Greece. Biol. Conserv. 118: 235-248 [CrossRef].
  25. Poirazidis K., Goutner V., Tsachalidis E., and Kati V., 2007. Nesting habitat differentiation among four sympatric forest raptors in the Dadia National Park, Greece. Anim. Biodivers. Conserv. 30: 131-142.
  26. Sanchez-Gonzalez M., Tomé M., and Montero G., 2005. Modelling height and diameter growth of dominant cork oak trees in Spain. Ann For. Sci. 62: 633-643 [EDP Sciences] [CrossRef].
  27. Saveland J.M. and Neuenschwander L.F., 1990. A signal detection framework to evaluate models of tree mortality following fire damage, For. Sci. 36: 66-76.
  28. Schindler S., Poirazidis K., and Wrbka T., 2008. Towards a core set of landscape metrics as a prerequisite for biodiversity assessments: a case study from Dadia NP, Greece. Ecological Indicators, 8: 502-514.
  29. Schumacher F.X., 1939. A new growth curve and its application to timber yield studies. J. For. 37: 819-820.
  30. SPSS Inc., 2005. SPSS base system syntax reference guide, release 14.0.
  31. Soares P. and Tomé M., 2003. GLOBTREE: an individual tree growth model for Eucalyptus globulus in Portugal. In: Amaro A., Reed D., and Soares P. (Eds.), Modelling Forest Systems, CAB International, Walingford, pp. 97-110.
  32. Stage A.R., 1973. Prognosis model for stand development, USDA Forest Service, Research Paper INT-137, p. 32.
  33. Tomé J., Tomé M., Barreiro S., and Amaral Paulo J., 2006. Age-independent difference equations for modelling tree and stand growth. Can. J. For. Res. 36: 1621-1630 [CrossRef].
  34. Trasobares A., Pukkala T., and Miina J., 2004a. Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann. For. Sci. 61: 9-24 [EDP Sciences] [CrossRef].
  35. Trasobares A., Tomé M., and Miina J., 2004b. Growth and yield model for Pinus halepensis Mill. in Catalonia, north-east Spain. For. Ecol. Manage. 203: 49-62 [CrossRef].
  36. Vanclay J.K., 1994. Modelling forest growth and yield: Applications to mixed tropical forests, CABI Publishing, Walingford, UK, p. 312.
  37. Wycoff W., Crookston N.L., and Stage A.R., 1982. User's guide to the stand prognosis model, USDA Forest Service, General Technical Report INT-133, p. 114.
  38. Wycoff W., 1990. A basal area increment model for individual conifers in the northern Rocky Mountains. For. Sci. 36: 1077-1104.