Free Access
Issue
Ann. For. Sci.
Volume 66, Number 2, March 2009
Article Number 211
Number of page(s) 9
DOI https://doi.org/10.1051/forest/2008093
Published online 28 February 2009
References of  Ann. For. Sci. 66 (2009) 211
  1. Able A.J., Guest D.I., and Sutherland M.W., 1998. Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var nicotianae. Plant. Physiol. 117: 491–499 [PubMed] [CrossRef].
  2. Allan A.C., Lapidot M., Culver J.N., and Fluhr R., 2001. An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol. 126: 97–108 [PubMed] [CrossRef].
  3. Asada K., 1994. Production and action of active oxygen species in photosynthetic tissues. In: Foyer C.H. and Mullineaux P.M. (Eds.), Production and action of active oxygen species in photosynthetic tissues, CRC Press, Boca Raton, pp. 77–104.
  4. Azevedo H., Lino-Neto T., and Tavares R.M., 2003. An improved method for high-quality RNA isolation from needles of adult maritime pine trees. Plant Mol. Biol. Rep. 21: 333–338 [CrossRef].
  5. Azevedo H., Dias A.C.P., and Tavares R.M., 2008a. Establishment and characterization of Pinus pinaster suspension cell cultures. Plant Cell Tiss. Organ Cult. 93: 115–121 [CrossRef].
  6. Azevedo H., Lino-Neto T., and Tavares R.M. 2008b. The necrotroph Botrytis cinerea induces a non-host Type II resistance mechanism in Pinus pinaster suspension-cultured cells. Plant Cell Physiol. 49: 386–395.
  7. Beauchamp C. and Fridovich I., 1971. Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–286 [PubMed] [CrossRef].
  8. Bor M., Ozdemir F., and Turkan I., 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci. 164: 77–84 [CrossRef].
  9. Boveris A. and Chance B., 1973. The mitochondrial generation of hydrogen peroxide. Biochem. J. 134: 707–716 [PubMed].
  10. Bowler C., Slooten L., Vandenbraden S., Rycke R.D., Botterman J., Sybesma C., Montagu M.V., and Inze D., 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 10: 1723–1732 [PubMed].
  11. Corpas F.J., Gomez M., Hernandez J.A., and Del Rio L.A., 1993. Metabolism of activated oxygen in peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. J. Plant Physiol. 141: 160–165.
  12. Couée I., Sulmon C., Gouesbet G., and El Amrani A., 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 57: 449–459 [PubMed] [CrossRef].
  13. Elkahouia S., Hernández J.A., Abdellyc C., Ghrira R., and Limama F., 2005. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci. 168: 607–613 [CrossRef].
  14. Fridovich I., 1985. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247: 1–11 [CrossRef].
  15. Hernandez J.A., Corpas F.J., Gomez M., del Rio L.A., and Sevilla F., 1993. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant. 89: 103–110 [CrossRef].
  16. Kaminaka H., Morita S., Tokumoto M., Masumura T., and Tanaka K., 1999. Differential gene expressions of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Rad. Res. 31: 219–225 [CrossRef].
  17. Koca H., Bor M., Ozdemir F., and Turkan I., 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot. 60: 344–351 [CrossRef].
  18. Kurepa J., Hérouart D., Van Montagu M., and Inzé D., 1997. Differential expression of CuZn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol. 38: 463–470 [PubMed].
  19. Lino-Neto T., 2001. Role of oxidative stress enzymes during Zantedeschia aethiopica spathe whitening and regreening, Minho University, Braga, 284 p.
  20. Loreto F. and Velikova V., 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127: 1781–1787 [PubMed] [CrossRef].
  21. Masood A., Shah N.A., Zeeshan M., and Abraham G., 2006. Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ. Exp. Bot. 58: 216–222 [CrossRef].
  22. Mittler R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410 [PubMed] [CrossRef].
  23. Mittler R., Vanderauwera S., Gollery M., and Van Breusegem F., 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490–498 [PubMed] [CrossRef].
  24. Murashige T. and Skoog F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497 [CrossRef].
  25. Noctor G. and Foyer C.H., 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249–279 [PubMed] [CrossRef].
  26. Osmond C.B. and Grace S.C., 1995. Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis. J. Exp. Bot. 46: 1351–1362.
  27. Perl A., Perl-treves R., Galili G., Aviv D., Shalgi E., Malkin S., and Galun E., 1993. Enhanced oxidative-stress defence in transgenic potato plants expressing tomato Cu, Zn superoxide dismutase. Theor. Appl. Genet. 85: 568–576.
  28. Petersen D.R., Reichard J., Kolaja K.L., and Hartley D.P., 1999. 4-Hydroxynonenal and malondialdehyde heatic protein adducts in rats treated with carbon tetrachloride: immuno-chemical dection and lobular localization. Toxicol. Appl. Pharm. 161: 23–33 [CrossRef].
  29. Radic S., Radic-Stojkovic M., and Pevalek-Kozlina B., 2006. Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. J. Plant Physiol. 163: 1284–1292 [PubMed] [CrossRef].
  30. Ruiz J.M., Blasco B., Rivero R.M., and Romero L., 2005. Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiol. Plant. 124: 465–475 [CrossRef].
  31. Sedmak J.J. and Grossberg S.E., 1977. A rapid, sensitive, and versatile assay for protein using Coomassie Brilliant Blue G250. Anal. Biochem. 79: 544–552 [PubMed] [CrossRef].
  32. Shimon-Kerner N., Mills D., and Merchuk J.C., 2000. Sugar utilization and invertase activity in hairy-root and cell-suspension cultures of Symphytum officinale. Plant Cell Tissue Organ Cult. 62: 89–94.
  33. Van Breusegem F., Bailey-Serres J., and Mittler R., 2008. Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 147: 978–984 [PubMed] [CrossRef].
  34. Verniquet F., Gaillard J., Neuberger M., and Douce R., 1991. Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem. J. 276: 643–648 [PubMed].
  35. Volokita M., 1991. The carboxy-terminal end of glycolate oxidase directs a foreign protein into tobacco leaf peroxisomes. Plant J. 1: 361–366 [PubMed] [CrossRef].
  36. Wang J., Zhang H., and Allen R.D., 1999. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 40: 725–732 [PubMed].
  37. Zhu J.-K., 2001. Plant salt tolerance. Trends Plant Sci. 6: 66–71 [PubMed] [CrossRef].