Free Access
Issue
Ann. For. Sci.
Volume 66, Number 5, July-August 2009
Article Number 510
Number of page(s) 9
DOI https://doi.org/10.1051/forest/2009039
Published online 09 July 2009
References of  Ann. For. Sci. 66 (2009) 510
  1. Achat D.L., 2009. Biodisponibilité du phosphore dans les sols landais pour les peuplements forestiers de pin maritime. Ph.D. thesis, Université de Bordeaux 1, Bordeaux, France, 291 p.
  2. Achat D.L., Bakker M.R., Augusto L., Saur E., and Morel C., 2009. Evaluation of the phosphorus status of highly P-deficient spodosols in temperate pine stands: combining isotopic dilution and extraction methods. Biogeochemistry (in press).
  3. Attiwill P.M. and Adams M.A., 1993. Tansley review No. 50. Nutrient cycling in forests. New Phytol. 124: 561–582.
  4. Augusto L., Badeau V., Arrouays D., Trichet P., Flot J.L., Jolivet C., and Merzeau D., 2006. Caractérisation physico-chimique des sols à l'échelle d'une région naturelle à partir d'une compilation de données. Exemple des sols du massif forestier landais. Etude et Gestion des Sols 13: 7–22.
  5. Bakker M.R., Augusto L., and Achat D.L., 2006. Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286: 37–51 [CrossRef].
  6. Bakker M.R., Jolicoeur E., Trichet P., Augusto L., Plassard C., Guinberteau J., and Loustau D., 2009. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand. Tree Physiol. (in press).
  7. Barber S.A., 1995. Soil Nutrient Bioavailability: A Mechanistic approach, John Wiley & Sons, New York, 398 p.
  8. Berg B. and McClaugherty C., 2003. Plant litter: decomposition, humus formation, carbon sequestration, Springer-Verlag, Berlin, Germany, 286 p.
  9. Black C.H., 1988. Interaction of phosphorus fertilizer form and soil medium on Douglas-fir seedling phosphorus content, growth and photosynthesis. Plant Soil 106: 191–199 [CrossRef].
  10. Brandtberg P.O., Bengtsson J., and Lundkvist H., 2004. Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands. For. Ecol. Manage. 198: 193–208 [CrossRef].
  11. Carey M.L., Hunter I.R., and Andrew I., 1982. Pinus radiata forest floors: factors affecting organic matter and nutrient dynamics. N. Z. J. For. Sci. 12: 36–48.
  12. Chapin F.S., 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260 [CrossRef].
  13. Cheaib A., Mollier A., Thunot S., Lambrot C., Pellerin S., and Loustau D., 2005. Interactive effects of phosphorus and light availability in early growth of maritime pine seedlings. Ann. For. Sci. 62: 575–583 [EDP Sciences] [CrossRef].
  14. Compton J.E. and Cole D.W., 1998. Phosphorus cycling and soil P fractions in Douglas-fir and red alder stands. For. Ecol. Manage. 110: 101–112 [CrossRef].
  15. Di H.J., Condron L.M., and Frossard E., 1997. Isotope techniques to study phosphorus cycling in agricultural and forest soils: a review. Biol. Fertil. Soils 24: 1–12 [CrossRef].
  16. Fardeau J.C., 1993. Le phosphore biodisponible du sol. Un système pluricompartimental à structure mamellaire. Agronomie 1: 1–13.
  17. Fardeau J.C., 1996. Dynamics of phosphate in soils. An isotopic outlook. Fert. Res. 45: 91–100.
  18. Fisher R.F. and Binkley D., 2000 Ecology and management of forest soils, 3rd ed., John Wiley & Sons, Inc., USA, 489 p.
  19. Frossard E. and Sinaj S., 1997. The isotope exchange kinetics technique: a method to describe the availability of inorganic nutrients. Applications to K, P, S and Zn. Isot. Environ. Health. Stud. 33: 61–77 [CrossRef].
  20. Jackson R.B., Canadell J., Ehleringer J.R., Mooney H.A., Sala O.A., and Schulze E.D., 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389–411 [CrossRef].
  21. Jonard M., Misson L., and Ponette Q., 2006. Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Can. J. For. Res. 36: 2684–2695 [CrossRef].
  22. Hallsby G., 1995. Influence of Norway spruce seedlings on the nutrient availability in mineral soil and forest floor material. Plant Soil 173: 39–45 [CrossRef].
  23. Hamon R.E., Bertrand I., and McLaughlin M.J., 2002. Use and abuse of isotopic exchange data in soil chemistry. Aust. J. Soil Res. 40: 1371–1381 [CrossRef].
  24. Kimmins J.P., 1997. Forest ecology: a foundation for sustainable forest management, 2nd ed., Prentice and Hall, Upper Saddle River, New Jersey, 596 p.
  25. Leuschner C., 1998. Water extraction by tree fine roots in the forest floor of a temperate Fagus-Quercus forest. Ann. Sci. For. 55: 141–157 [CrossRef].
  26. Loustau D., Ben Brahim M., Gaudillère J.P., and Dreyer E., 1999. Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiol. 19: 707–715 [PubMed].
  27. Merino A., Real C., and Rodriguez-Guitian M., 2008. Nutrient status of managed and natural forest fragments of Fagus sylvatica in southern Europe. For. Ecol. Manage. 255: 3691–3699 [CrossRef].
  28. Morel C. and Plenchette C., 1994. Is the isotopically exchangeable phosphate of a loamy soil the plant-available P? Plant Soil 158: 287–297.
  29. Morel C., Tiessen H., and Stewart J.W.B., 1996. Correction for P-sorption in the measurement of soil microbial biomass by CHCl3 fumigation. Soil Biol. Biochem. 28: 1699–1706 [CrossRef].
  30. Morel C., Tunney H., Plénet D., and Pellerin S., 2000. Transfer of phosphate ions between soil and solution. Perspectives in soil testing. J. Environ. Qual. 29: 50–59.
  31. Northup R.R., Dahlgren R.A., and Yu Z., 1995. Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient; a new interpretation. Plant Soil 171: 255–262.
  32. Paré D. and Bernier B., 1989. Origin of the phosphorus deficiency observed in declining sugar maple stands in the Quebec Appalachians. Can. J. For. Res. 19: 24–34 [CrossRef].
  33. Polglase P.J., Attiwill P.M., and Adams M.A., 1992. Nitrogen and phosphorus cycling in relation to stand age of Eucalyptus regnans F. Muell. III. Labile inorganic and organic P, phosphatase activity and P availability. Plant Soil 142: 177–185 [CrossRef].
  34. Read D.J. and Boyd R., 1986. Water relations of mycorrhizal fungi and their host plants. In: Ayres P. and Boddy L. (Eds.), Water, fungi and plants, Cambridge University Press, Cambridge, pp. 287–303.
  35. Rousseau J.V.D., Sylvia D.M., and Fox A.J., 1994. Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol. 128: 639–644 [CrossRef].
  36. Saunders W.M.H. and Williams E.G., 1955. Observations on the determination of total organic phosphorus in soils. J. Soil Sci. 6 : 254–267.
  37. Saur E., 1989. Effet de l'apport de phosphore, de carbonate de calcium et d'oligo-éléments (Cu, Mn, Zn, B) à trois sols sableux acides sur la croissance et la nutrition de semis de Pinus pinaster Soland in Ait. I. Croissance et nutrition en éléments majeurs. Agronomie 9: 931–940.
  38. Stevenson F.J. and Cole M.A., 1999. Cycles of soil, 2nd ed., John Wiley & Sons, USA, 637 p.
  39. Stroia C., Jouany C., and Morel C., 2007. Effect of pooling soil samples on the diffusive dynamics of phosphate ionic species. Soil Sci. 172: 614–622 [CrossRef].
  40. Tennant D., 1975. A test of a modified line intersect method of estimating root length. J. Ecol. 63: 995–1001 [CrossRef].
  41. Trichet P., Jolivet C.I., Arrouays D., Loustau D., Bert D., and Ranger J., 1999. Le maintien de la fertilité des sols forestiers landais dans le cadre de la sylviculture intensive du pin maritime. Revue bibliographique et identification des pistes de recherches. Étude et Gestion des Sols 6: 197–214.
  42. Trichet P., Vauchel F., Bert D., and Bonneau M., 2000. Fertilisation initiale et réitérée du pin maritime (Pinus pinaster Aït.): principaux résultats de l'essai de Berganton. Rev. For. Fr. 52: 207–222 [CrossRef].
  43. Trichet P., Loustau D., Lambrot C., and Linder S., 2008. Manipulating nutrient and water availability in a maritime pine plantation: effects on growth, production, and biomass allocation at canopy closure. Ann. For. Sci. 65: 814 [EDP Sciences] [CrossRef].
  44. Van Veldhoven P.V. and Mannaerts G.P., 1987. Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 161: 45–48 [PubMed] [CrossRef].
  45. Walbridge M.R. and Vitousek P.M., 1987. Phosphorus mineralization potentials in acid organic soils: processes affecting 32PO43- isotope dilution measurements. Soil Biol. Biochem. 19: 709–717 [CrossRef].
  46. Wallander H., Nilsson L.O., Hagerberg D., and Baath E., 2001. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 151: 753–760 [CrossRef].
  47. Wallander H., Goransson H., and Rosengren U., 2004. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139: 89–97 [PubMed] [CrossRef].
  48. Wood T., Bormann F.H., and Voigt G.K., 1984. Phosphorus cycling in a northern hardwood forest: biological and chemical control. Science 233: 391–393 [CrossRef].
  49. Yanai R.D., 1994. A steady-state model of nutrient uptake accounting for newly grown roots. Soil Sci. Soc. Am. J. 58: 1562–1571.