Free Access
Issue
Ann. For. Sci.
Volume 66, Number 8, December 2009
Article Number 804
Number of page(s) 9
DOI https://doi.org/10.1051/forest/2009071
Published online 25 November 2009
  • Benson-Cooper D.M., Knowles R.L., Thomson F.J. and Cown D.J., 1982. Computed tomographic scanning for the detection of defects within logs. FRI Bulletin, Forest Research Institute, New Zealand, 9 p [Google Scholar]
  • Crawley M.J., 2007. The R book, John Wiley & Sons, 942 p [Google Scholar]
  • Davis J. and Wells P., 1992. Computer tomography measurements on wood. Industrial Metrology 2: 195–218 [CrossRef] [Google Scholar]
  • Espinoza G.R., Hern, ez R., Condal A., Verret D. and Beauregard R., 2005. Exploration of the physical properties of internal characteristics of sugar maple logs and relationships with CT images. Wood Fiber Sci. 37: 591–604 [Google Scholar]
  • Fromm J.H., Sautter I., Matthies D., Kremer J., Schumacher P. and Ganter C., 2001. Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. Plant Physiol. 127: 416–425 [CrossRef] [PubMed] [Google Scholar]
  • Funt B.V., 1985. A computer vision System that analyzes CT-scans of sawlogs. , Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, California, pp. 175–177 [Google Scholar]
  • Hattori Y. and Kanagawa Y., 1985. Non-destructive measurement of moisture distribution in wood with a medical X-ray CT scanner I. Accuracy and influencing factors. Mokuzai Gakkaishi 31: 974–980 [Google Scholar]
  • Lindgren L.O., 1991. The accuracy of medical CAT-scan images for non-destructive density measurements in small volume elements within solid wood. Wood Sci. Technol. 25: 425–432 [Google Scholar]
  • Lindgren L.O., 1991. Medical CAT-scanning: X-ray absorption coefficients, CT-numbers and their relation to wood density. Wood Sci. Technol. 25: 341–349 [Google Scholar]
  • Macedo A., Vaz C.M.P., Pereira J.C.D., Naime J.M., Cruvinel P.E. and Crestana S., 2002. Wood density determination by X- and gamma-ray tomography. Holzforschung 56: 535–540 [CrossRef] [Google Scholar]
  • Mull R.T., 1984. Mass estimates by computed tomography: physical density from CT numbers. Am. J. Roentgenol. 143: 1101–1104 [Google Scholar]
  • Parr D.G., Stoel B.C., Stolk J., Nightingale P.G. and Stockley R.A., 2004. Influence of Calibration on Densitometric Studies of Emphysema Progression Using Computed Tomography. Am. J. Respir. Crit. Care Med. 170: 883–890 [CrossRef] [PubMed] [Google Scholar]
  • Rathgeber C.B.K., Decoux V. and Leban J.M., 2006. Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann. For. Sci. 63: 699–706 [CrossRef] [EDP Sciences] [Google Scholar]
  • Saw C.B., Loper A., Kom, uri K., Combine T., Huq S. and Scicutella C., 2005. Determination of CT-to-density conversion relationship for image-based treatment planning systems. Med. Dosim. 30: 145–148 [CrossRef] [PubMed] [Google Scholar]
  • Taylor A.J., 2006. Wood density determination in Picea sitchensis using computerised tomography: how do density measurements compare with measurements of pilodyn pin penetration? University of Wales, Bangor [Google Scholar]
  • Vallet P., 2005. Impact de différentes stratégies sylvicoles sur la fonction “puits de carbone” des peuplements forestiers. Modélisation et simulation à l’échelle de la parcelle. Doctoral thesis, École Nationale du Génie Rural, des Eaux et des Forêts, France. [Google Scholar]
  • Zianis D., Muukkonen P., Mäkipää R. and Mencuccini M., 2005. Biomass and stem volume equations for tree species in Europe. Silva Fenn. Monogr. 4: 2–63 [Google Scholar]