Free Access
Issue
Ann. For. Sci.
Volume 66, Number 8, December 2009
Article Number 806
Number of page(s) 9
DOI https://doi.org/10.1051/forest/2009075
Published online 25 November 2009
  • Bergsten U., Lindeberg J., Rindby A. and Evans R., 2001. Batch measurements of wood density on intact or prepared drill cores using X-ray microdensitometry. Wood Sci. Technol. 35: 435–452 [CrossRef] [Google Scholar]
  • Biging G.S. and Dobbertin M., 1992. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For. Sci. 38: 695–720 [Google Scholar]
  • Bujold S.J., Simpson J.D., Beukeveld J.H.J. and Schneider , M.H., 1996. Relative density and growth of eleven Norway spruce provenances in Central New Brunswick. North J. Appl. For. 13(3): 124–128. [Google Scholar]
  • Caj and er A.K., 1926. The Theory of Forests Types, Acta For. Fenn. 29: 1–108 [Google Scholar]
  • Ekensted F., Grahn T., Hedenberg Ö., Lundqvist S.-O., Arlinger J. and Wilhelmsson L., 2003. Variations in fiber dimensions of Norway spruce and Scots pine. Swedish Pulp and Paper Research Institute, Stockholm, Sweden STFI Report, PUB13, 36 p [Google Scholar]
  • Fottland H. and Skrøppa T., 1989. The IUFRO 1964/68 provenance experiment with Norway spruce (Picea abies) in Norway: variation in mortality and height growth. Meddelelser fra Norsk institutt for skogforskning 43.1: 30 p. [Google Scholar]
  • Hegyi F., 1974. A simulation model for managing jack-pine stands. In: Fries, Growth Models for Tree and Stand Simulation. Royal College of Forestry, Stockholm, Sweden. Res. Note 30, pp. 74–90 [Google Scholar]
  • Jayawickrama K.J.S., McKe, S.E., Jett J.B. and Wheeler E.A., 1997. Date of earlywood-latewood transition in provenances and families of loblolly pine, and its relationship to growth phenology and juvenile wood specific gravity. Can. J. For. Res. 27: 1245–1253 [Google Scholar]
  • Jayawickrama K.J.S., McKe, S.E. and Jett J.B., 1998. Phenological variation in height and diameter growth in provenances and families of loblolly pine. New For. 16: 11–25 [CrossRef] [Google Scholar]
  • Laasasenaho J., 1982. Taper curve and volume functions for pine, spruce and birch. Commun. Inst. For. Fenn. 108: 1–74 [Google Scholar]
  • Mäkinen H., 1997. Possibilities of competition indices to describe competitive differences between Scots pine families. Silva Fenn. 31: 43–52 [Google Scholar]
  • Mäkinen H., Saranpää P. and Linder S., 2002. Wood-density variation of Norway spruce in relation to nutrient optimization and fibre dimensions. Can. J. For. Res. 32: 185–194 [CrossRef] [Google Scholar]
  • Mäkinen H., Saranpää P. and Linder S., 2002. Effect of growth rate on fibre characteristics in Norway spruce (Picea abies (L.) Karst.). Holzforschung 56: 449–460 [CrossRef] [Google Scholar]
  • Persson B. and Persson A., 1997. Variation in stem properties in a IUFRO 1964/1968 Picea abies provenance experiment in Southern Sweden. Silvae Genet. 2–3: 94–101 [Google Scholar]
  • Pukkala T., 1989. Methods to describe the competition process in a tree stand. Scand. J. For. Res. 4: 187–202 [Google Scholar]
  • Schütz J.P., 1989. Zum Problem der Konkurrenz in Mischbeständen. Schweiz. Z. Forstwes. 140: 1069–1083 [Google Scholar]
  • Skrøppa T. and Magnussen S., 1993. Provenance variation in shoot growth components of Norway spruce. Silvae Genet. 42: 111–119 [Google Scholar]
  • Skrøppa T., Hylen G. and Dietrichson J., 1999. Relationships between wood density components and juvenile height growth and growth rhythm traits for Norway spruce provenances and families. Silvae Genet. 48: 235–239 [Google Scholar]
  • Ståhl E. 1998. Changes in wood and stem properties of Pinus sylvestris caused by provenance transfer. Silva Fenn. 32: 163–172. [Google Scholar]
  • Steffenrem A., Saranpää P., Lundqvist S.O. and SKroppa T. 2007. Variation in wood properties among five full-sib families of Norway spruce (Picea abies) Ann. For. Sci. 64: 799-806. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tomé M. and Burkhart H.E., 1989. Distance-dependent competition measures for predicting growth of individual trees. For. Sci. 35: 816–831 [Google Scholar]
  • Tyrväinen J., 1995. Wood and fiber properties of Norway spruce and its suitability for thermomechanical pulping. Acta For. Fenn. 249: 1–155 [Google Scholar]
  • Wang T., Aitken S. N., Rozenberg P. and Millie F., 2000. Selection for improved growth and wood density in Lodgepole pine: effects on radial patterns of wood variation. Wood Sci. Technol. 32: 391–403 [Google Scholar]
  • Wilhelmsson L., Arlinger J., Spångberg K., Lundqvist S-O., Grahn T., Hedenberg Ö. and Olsson L., 2002. Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scand. J. For. Res. 17: 330–350 [Google Scholar]
  • Zhang S.Y. and Morgenstern E.K., 1995. Genetic variation and inheritance of wood density in black spruce (Picea mariana) and its relationship with growth: implications for tree breeding. Wood Sci. Technol. 30: 63–75 [CrossRef] [Google Scholar]
  • Zobel B.J. and van Buijtenen J.P., 1989. Wood variation: Its causes and control. Springer-Verlag, Berlin, Germany, 363 p [Google Scholar]
  • Zobel B.J. and Jett J.B., 1995. Genetics of wood production, Springer-Verlag, Berlin. [Google Scholar]
  • Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., Jaatinen R., Pappinen A. and Kellomäki S., 2007. Differences in growth and wood property traits in cloned Norway spruce (Picea abies). Can. J. For. Res. 37: 2600–2611 [CrossRef] [Google Scholar]
  • Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., Jaatinen R. and Pappinen A., 2008. Differences in fibre properties in cloned Norway spruce (Picea abies). Can. J. For. Res. 38: 1071–1082 [CrossRef] [Google Scholar]