Free Access
Issue
Ann. For. Sci.
Volume 66, Number 8, December 2009
Article Number 807
Number of page(s) 9
DOI https://doi.org/10.1051/forest/2009076
Published online 25 November 2009
  • Adams M.A. and Attiwill P.M., 1991. Nutrient balance in forests of northern Tasmania.2. Alteration of nutrient availability and soil-water chemistry as a result of logging, slash burning and fertilizer application. For. Ecol. Manage. 7: 241–248 [CrossRef] [Google Scholar]
  • Almendros G., González-Vila F.J. and Martín F., 1990. Fire induced transformations on soil organic matter from an oak forest: an experimental approach to the effects of fire in humic substances. Soil Sci. 149: 158–168 [CrossRef] [Google Scholar]
  • Binkley D. and Hart S.C., 1989. The components of nitrogen availability assessments in forest soils. Adv. Soil Sci. 10: 57–112 [Google Scholar]
  • Binkley D., Bell R. and Sollins P.,1992. Comparison of methods for estimating soil nitrogen transformations in adjacent conifer and alder-conifer forests. Can. J. For. Res. 22: 858–863 [CrossRef] [Google Scholar]
  • BMDP.1990. BMDP Statistical Software Inc. Los Angeles. USA. [Google Scholar]
  • Bremner J.M., 1965. Inorganic forms of nitrogen. In: Black et al. (Eds.), Methods of soil analysis. Part 2., Am. Soc. Agrom. Madison. Wis. Agronomy 9: 1179–1237 [Google Scholar]
  • Choromanska U. and De Luca T.H., 2001. Prescribed fire alters the impact of wildfire on soil biochemical properties in a ponderosa pine forest. Soil Sci. Soc. Am. J. 65: 232–238 [CrossRef] [Google Scholar]
  • Dambrine E., Vega J.A., Taboada T., Rodríguez L., Fernández C., Macías F. and Gras J.M., 2000. Bilans d’eléments minéraux dans de petits bassins versants forestiers de Galice (NW Espagne). Ann. For. Sci. 57: 23–38 [CrossRef] [EDP Sciences] [Google Scholar]
  • De Luca T.H. and Zouhar K.L., 2000. Effects of selection harvest and prescribed fire on the soil nitrogen status of ponderosa pine forests. For. Ecol. Manage. 138: 263–271 [CrossRef] [Google Scholar]
  • Ellingson L.J., Kauffman J.B., Cummings D.L., St, ford R.L. Jr and Jaramillo V.J., 2000. Soil N dynamics associated with deforestation, biomass burning and pasture conversion in a Mexican tropical dry forest. For. Ecol. Manage. 137: 41–51 [CrossRef] [Google Scholar]
  • Fernández C., 2002. Influencia de actuaciones selvícolas y perturbaciones en el balance hídrico y dinámica de nutrientes en cuencas experimentales. Su conexión con la sostenibilidad de la selvicultura intensiva en especies forestales de crecimiento rápido en Galicia. Phis. Diss. Vigo University, 508 p. [Google Scholar]
  • Fernández C., Vega J.A., Gras J.M., Fonturbel T., Cui nas P., Dambrine E. and Alonso , M., 2004. Soil erosion after Eucalyptus globulus clearcutting: differences between logging slash disposal treatments. For. Ecol. Manage. 195 (1–2): 85–95. [CrossRef] [Google Scholar]
  • Fritze H., Pennanen T. and Pietikäinen J., 1992. Recovery of soil microbial biomass and activity from prescribed burning. Can. J. For. Res. 23: 1286–1290 [CrossRef] [Google Scholar]
  • Giardina C.P. and Rhoades C.C., 2001. Clear cutting and burning affect nitrogen supply, phosphorus fractions and seedling growth in soils from a Wyoming lodgepole pine forest. For. Ecol. Manage. 140: 19–28 [CrossRef] [Google Scholar]
  • Giovannini G., Lucchesi S. and Giachetti M., 1990. Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Sci. 149: 344–350 [CrossRef] [Google Scholar]
  • Gómez-Rey M.X., Vasconcelos E. and Madeira M., 2007. Lysimetric study of eucalypt residue management effects on N leaching and mineralization. Ann. For. Sci. 64: 699–706 [CrossRef] [EDP Sciences] [Google Scholar]
  • Idol T.W., Pope P.E. and Ponder Jr. F., 2003. N mineralization, nitrification, and N uptake across a 100-year chronosequence of upland hardwood forests. For. Ecol. Manage. 176: 509–518 [CrossRef] [Google Scholar]
  • Jussy J.-H., Ranger J., Bienaimé S. and Dambrine E., 2004. Effects of a clear-cut on the in situ nitrogen mineralisation and the nitrogen cycle in a 67-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation. Ann. For. Sci. 61: 297–408 [Google Scholar]
  • Kempers A.J. 1974. Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodium, nitroprusside and hypochlorite. Geoderma. 12: 201–206. [CrossRef] [Google Scholar]
  • Klopatek J.M., Klopatek C.C. and De Bano L.F., 1990. Potential variation of nitrogen transformations in pinyon-juniper ecosystems resulting from burning. Biol. For. Soils. 10: 35–44 [Google Scholar]
  • Knoepp J.D., Vose J.M. and Swank W.T., 2004. Long-term soil responses to site preparation burning in the Southern Appalachians. For. Sci. 50: 540–550 [Google Scholar]
  • Ludwig B., Khanna P.K., Raison R.J. and Jacobsen K.L., 1998. Modelling cation composition of soil extracts under ashbeds following an intense slashfire in a eucalypt forest. For. Ecol. Manage. 103: 9–20 [CrossRef] [Google Scholar]
  • Magill A.H., Aber J.D., Hendriks J.J., Bowden R.D., Stendler P.A., Melillo and J.M., 1997. Biogeochemical response of forest ecosystems to simulated chronic nitrogen depositions. Ecol. Appl. 7: 402–415 [CrossRef] [Google Scholar]
  • Merino A., Balboa M.A., Rodríguez Soalleiro, R. and Alvarez González J.G., 2005. Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For. Ecol. Manage. 207: 325–339 [CrossRef] [Google Scholar]
  • Nishita H. and Haug R.M., 1972. Soil physical and chemical characteristics of heated soils. Soil Sci. 113: 422–430 [CrossRef] [Google Scholar]
  • O’Connell A.M., Grove T.S., Medham D.S. and Rance S.J., 2004. Impact of harvest residue management on soil nitrogen dynamics in Eucalyptus globulus plantations in south western Australia. Soil Biol. Biochem. 36: 39–48 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Pérez-Batallón P., Ouro G., Macías F. and Merino A., 2001. Initial mineralization of organic matter in a forest plantation soil following different logging residue management techniques. Ann. For. Sci. 58: 807–818 [CrossRef] [EDP Sciences] [Google Scholar]
  • Pietikäinen J. and Fritze H., 1995. Clear-cutting and prescribed burning in coniferous forests: comparison of effects on soil fungal and total microbial biomass, respiration and nitrification. Soil Biol. Biochem. 27: 229–240 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Raison R.J., 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Plant Soil. 51: 73–108 [CrossRef] [Google Scholar]
  • Raison R.J., O’Connell A.M. and Khanna P.K., 1987. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 19: 521–530 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Raison R.J., O’Connell A.M., Khanna P.K. and Keit H., 1993. Effect of repeated fires on nitrogen and phosphorus budgets and cycling processes in forest ecosystems. In: Trabaud L. and Prodon R. (Eds.), Fire in Mediterranean Ecosystems, CEC, Brussels-Luxembourg, pp. 347–363. [Google Scholar]
  • Romanyá J., Casals P. and Vallejo V.R., 2001. Short-term effects of fire on soil nitrogen availability in Mediterranean grasslands and shrublands growing in old fields. For. Ecol. Manage. 147: 39–53 [CrossRef] [Google Scholar]
  • Serrasolsas I. and Khanna P.K., 1995. Changes in heated and autoclaved forest soils of S.E. Australia. I. Carbon and nitrogen. Biogeochemistry. 29: 3–24 [Google Scholar]
  • SPSS, 2004. User’s Manual, Ireland. [Google Scholar]