Free Access
Ann. For. Sci.
Volume 67, Number 1, January-February 2010
Article Number 107
Number of page(s) 10
Published online 24 December 2009
  • Alarcon J.J., Domingo R., Green S.R., Nicolas E. and Torrecillas A., 2003. Estimation of hydraulic conductance within field-grown apricot using sap flow measurements. Plant Soil 251: 125–135 [CrossRef] [Google Scholar]
  • Boyer J.S., 1985. Water transport. Ann. Rev. Plant Physiol. 36: 473–516 [Google Scholar]
  • Brooks J.R., Schulte P.J., Bond B.J., Coulombe R., Domec J.C., Hinckley T.M., McDowell N. and Phillips N., 2003. Does foliage on the same branch compete for the same water? Experiments on Douglas-fir trees. Trees 17: 101–108 [Google Scholar]
  • Cermak J. and Kucera J., 1990. Water uptake in healthy and ill trees under drought and hypoxia and non-invasive assessment of the effective size of root systems. In: Persson H. (Ed.), Proc. COST 612 Workshop “Above and belowground interactions in forest trees in acidified soils”, Simlangsdalen, Sweden, pp. 185–195. [Google Scholar]
  • Cruiziat P., Cochard H. and Ameglio T., 2002. Hydraulic architecture of trees: main concepts and results. Ann. For. Sci. 59: 723–752 [CrossRef] [EDP Sciences] [Google Scholar]
  • Hubbard R.M., Bond B.J. and Ryan M.G., 1999. Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiol. 19: 165–172 [PubMed] [Google Scholar]
  • Huber B., 1928. Weitere quantitative Untersuchungen uber das Wasserleitungssystem der pflanzen. Jahrsblad des Wissenschaftliche Botany 67: 877–959 [Google Scholar]
  • Infante J.M., Mauchamp A., Fernandez-Ales R., Joffre R. and Rambal S., 2001. Within-tree variation in transpiration in isolated evergreen oak trees: evidence in support of the pipe model theory. Tree Physiol. 21: 409–414 [PubMed] [Google Scholar]
  • Fujii T., Lee S.J., Kuroda N. and Suzuki Y., 2001. Conductive function of intervessel pits through a growth ring boundary of Machilus thunbergii. IAWA J. 22: 1–14 [Google Scholar]
  • Kaipiainen L.K. and Hari P., 1985. Balance of water transport system in Pinus sylvestris. I. Pathways of water in xylem (in Russ.). Lesovedenije 5: 23–28 [Google Scholar]
  • Kaipiainen L.K. and Sofronova G.I., 2003. The role of the transport system in the control of the source-sink relations in Pinus sylvestris. Russ. J. Plant Physiol. 50: 125–132 [CrossRef] [Google Scholar]
  • Kitin P.B., Fujii T., Abe H. and Funada R., 2004. Anatomy of the vessel network within and between tree rings of Fraxinus Lanuginosa (Oleaceae). Amer. J. Bot. 91: 779–788 [CrossRef] [Google Scholar]
  • Kurth W. and Lanwert D., 1995. Biometrical foundation for a dynamical architectural model of spruce (Picea-abies (L) karst). Allg. Forst Jagdztg. 166: 177–184 [Google Scholar]
  • Lanner R.M., 2002. Why do trees live so long? Ageing Res. Rev. 1: 653–671 [Google Scholar]
  • Larson D.W., Doubt J. and Matthes-Sears U., 1994. Radially sectored hydraulic pathways in the xylem of Thuja occidentalis as revealed by use of dyes. Int. J. Plant Sci. 155: 569–582 [CrossRef] [Google Scholar]
  • Loepfe L., Martinez-Vilalta J., Pinol J., Mencuccini and M., 2007. The relevance of xylem network structure for plant hydraulic efficiency and safety. J. Theor. Biol. 247: 788–803 [CrossRef] [PubMed] [Google Scholar]
  • Luttschwager D. and Remus R., 2007. Radial distribution of sap flux density in trunks of a mature beech stand. Ann. For. Sci. 64: 431–438 [CrossRef] [EDP Sciences] [Google Scholar]
  • MacKay J.F.G. and Weatherley P.E., 1973. The effects of transverse cuts through the stems of transpiring woody plants on water transport and stress in the leaves. J. Exp. Bot. 24: 15–28 [CrossRef] [Google Scholar]
  • Matthes U., Kelly P.E., Ryan C.E. and Larson D.W., 2002. The formation and possible ecological function of stem strips in Thuja occidentalis. Intern. J. Plant Sci. 163: 949–958 [CrossRef] [Google Scholar]
  • Nadezhdina N. and Cermak J., 2000a. Responses of sap flow rate along tree stem and coarse root radii to changes of water supply. In: Stokes A. (Ed.), The Supporting roots of trees and woody plants: form, function and physiology, Developments in Plant and Soil Sciences, Vol. 87, Kluwer Academic Publishers, 227–238. [Google Scholar]
  • Nadezhdina N. and Cermak J., 2000. Responses of sap flow in spruce roots to mechanical injury. In: Klimo E., Hager H. and Kulhavy J. (Eds.), Spruce Monocultures in Central Europe: Problems and Prospects. EFI Proc. 33: 167–175 [Google Scholar]
  • Nadezhdina N. and Cermak J., 2003. Instrumental methods for studies of structure and function of root systems in large trees. J. Exp. Bot. 54: 1511–1521 [CrossRef] [PubMed] [Google Scholar]
  • Nadezhdina N., Cermak J. and Nadezhdin V., 1998. Heat field deformation method for sap flow measurements. In: Cermak J. and Nadezhdina N. (Eds.), Measuring sap flow in intact plants. Proc. 4th. International Workshop, Zidlochovice, Czech Republic, IUFRO Publications, Brno, Czech Republic: Publishing House of Mendel University, pp. 72–92. [Google Scholar]
  • Nadezhdina N., Cermak J., Morales D., Jimenez M.S., Raschi A., Tognetti R. and Ferreira M.I., 2001. Variations in conducting patterns of trees growing in three Mediterranean countries and relations to crown development. In: Radoglou K. (Ed.), Forest Research: a challenge for an integrated European approach. Proc. International Conference, Thessaloniki, Greece, pp. 507–512. [Google Scholar]
  • Nadezhdina N., Cermak J. and Ceulemans R., 2002. Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiol. 22: 907–918 [PubMed] [Google Scholar]
  • Nadezhdina N., Tributsch H. and Cermak J., 2004. Infra-red images of heat field around a linear heater and sap flow in stems of lime trees under natural and experimental conditions. Ann. For. Sci. 61: 203–213 [CrossRef] [EDP Sciences] [Google Scholar]
  • Nadezhdina N., Ferreira M.I., Silva R. and Pacheco C.A., 2008. Seasonal variation of water uptake of a Quercus suber tree in Central Portugal. Plant Soil 305: 105–119 [CrossRef] [Google Scholar]
  • Orians C.M. and Jones C.G., 2001. Plants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability. OIKOS 94: 493–504 [CrossRef] [Google Scholar]
  • Orians C.M., Van Vuuren M.M.I., Harris N.L., Babst B.A. and Ellmore G.S., 2004. Differential sectoriality in long-distance transport in temperate tree species: evidence from dye flow, N-15 transport, and vessel element pitting. Trees 18: 501–509 [Google Scholar]
  • Orians C.M., Babst B. and Zanne A.E., 2005. Vascular Constraints and Long-Distance Transport in Dicots. In: Holbrook N.M. and Zwieniecki M. (Eds.), Vascular transport in plants. Oxford, Elsevier/AP co-imprint, pp. 355–371. [Google Scholar]
  • Pataki D.E., Oren R. and Phillips N., 1998. Responses of sup flux and stomatal conductance of Pinus taeda L. trees to stepwise reduction in leaf area. J. Exp. Bot. 49: 871–878 [CrossRef] [Google Scholar]
  • Pepin S., Livingston N.J. and Whitehead D., 2002. Responses of transpiration and photosynthesis to reversible changes in photosynthetic foliage area in western red cedar (Thuja plicata) seedlings. Tree Physiol. 22: 363–371 [PubMed] [Google Scholar]
  • Roach W.A., 1939. Plant injection as a physiological method. Ann. Bot. 3: 155–226 [Google Scholar]
  • Saveyn A., Steppe K. and Lemeur R., 2008. Spatial variability of xylem sap flow in mature beech (Fagus sylvatica) and its diurnal dynamics in relation to microclimate. Botany 86: 1440–1448 [CrossRef] [Google Scholar]
  • Schulte P.J. and Brooks J.R., 2003. Branch junctions and the flow of water through xylem in Douglas-fir and ponderosa pine stems. J. Exp. Bot. 54: 1597–1605 [CrossRef] [PubMed] [Google Scholar]
  • Shinozaki K., Yoda K., Hozumi K. and Kira T., 1964. A quantitative analysis of plant form – the pipe model theory. I. Basic analysis. Jpn. J. Ecol. 14: 97–105 [Google Scholar]
  • Shinozaki K., Yoda K., Hozumi K. and Kira T., 1964. A quantitative analysis of plant form – the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jpn. J. Ecol. 14: 133–139 [Google Scholar]
  • Steppe K., Cnudde V., Girard C., Lemeur R., Cnudde J.P. and Jacobs P., 2004. Use of X-Ray Computed Microtomography for Non-Invasive Determination of Wood Anatomical Characteristics. J. Struct. Biol. 148: 11–21 [CrossRef] [PubMed] [Google Scholar]
  • Stokes A., Berthier S., Nadezhdina N., Cermak J., and Loustau D., 2000. Sap flow in trees in influenced by stem movement. In: Spatz HCh. and Speck T. (Eds.), Proc. 3rd Plant Biomechanics Conf. Freiburg-Badenweiler, Aug. 27–Sept. 2, 2000. Georg Thieme Verlag, Stuttgart, New York, pp. 272–277. [Google Scholar]
  • Tyree M.T. and Ewers F.W., 1991. The hydraulic architecture of trees and other woody plants. New Phytol. 119: 345–360 [CrossRef] [Google Scholar]
  • Van den Honert T.H., 1948. Water transport in plants as a catenary process. Disc Faraday Soc. 3: 146–153 [CrossRef] [Google Scholar]
  • Vasicek F., 1984. The characteristics of biogenocenoses. In: Vasicek F. (Ed.), Ecophysiological and ecomorphological studies of individual trees in the spruce ecosystem of the Drahanska Vrchovina uplands (Czechoslovakia). Folia Universitatis Agriculturae, Agr. Univ. Brno. [Google Scholar]
  • Vite J.P. and Rudinsky J.A., 1959. The water conducting systems in conifers and their importance to the distribution of trunk-injected chemicals. Contribution of Boyce Thompson Institute 20: 27–38 [Google Scholar]
  • Waring R.H., Gholz H.L., Grier C.C. and Plummer M.L., 1977. Evaluating stem conducting tissue as an estimator of leaf area in four woody angiosperms. Can. J. Bot. 55: 1474–1477 [CrossRef] [Google Scholar]
  • Watson M.A. and Casper B.B., 1984. Morphogenetic constraints on patterns of carbon distribution in plants. Ann. Rev. Ecol. Syst. 15: 233–258 [CrossRef] [Google Scholar]
  • West G.B., Brown J.H. and Enquist B.J., 1999. A general model for the structure and allometry of plant vascular systems. Nature 400: 664–667 [CrossRef] [Google Scholar]
  • Whitehead D., Livingston N.J., Kelliher F.M., Hogan K.P., Pepin S., McSeveny T.M. and Byers J.N., 1996. Response of transpiration and photosynthesis to a transient change in illuminated foliage area for a Pinus radiata D. tree. Plant Cell Environ. 19: 949–957 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Wullschleger S.D. and King A.W., 2000. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Tree Physiol. 20: 511–518 [PubMed] [Google Scholar]
  • Zanne A.E., Sweeney K., Sharma M. and Orians C.M., 2006. Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species. Funct. Ecol. 20: 200–206 [CrossRef] [Google Scholar]
  • Zimmermann M.H., 1983. Xylem structure and the ascent of sap. Springer Verlag, Berlin. [Google Scholar]