Free Access
Issue
Ann. For. Sci.
Volume 67, Number 1, January-February 2010
Article Number 108
Number of page(s) 7
DOI https://doi.org/10.1051/forest/2009093
Published online 24 December 2009
  • Abadía A., Gil E., Morales F., Montañes L., Montserrat G. and Abadía J., 1996. Marcescence and senescence in a sub-Mediterranean oak (Quercus subpyrenaica E.H. del Villar): photosynthetic characteristics and nutrient composition. Plant Cell Environ. 19: 685–694 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Barnes J.D., Balaguer L., Manrique E., Elvira S. and Davison A.W., 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 32: 85–100 [CrossRef] [Google Scholar]
  • Berg A.K. and Perkins T.D., 2004. Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. For. Ecol. Manage. 200: 113–117 [CrossRef] [Google Scholar]
  • Campbell R.J., Mobley K.N., Marini R.P. and Pfeiffer D.G., 1990. Growing conditions alter the relationship between SPAD-5001 values and apple leaf chlorophyll. HortScience 25: 330–331 [Google Scholar]
  • Castelli F., Contillo R. and Miceli F., 1996. Non-destructive determination of leaf chlorophyll content in four crop species. J. Agron. Crop Sci. 177: 275–283 [CrossRef] [Google Scholar]
  • Chang S.X. and Robinson D.J., 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. For. Ecol. Manage. 181: 331–338 [CrossRef] [Google Scholar]
  • Daas C., Montpied P., Hanchi B. and Dreyer E., 2008. Responses of photosynthesis to high temperatures in oak saplings assessed by chlorophyll-a fluorescence: inter-specific diversity and temperature-induced plasticity. Ann. For. Sci. 65: 305. [CrossRef] [EDP Sciences] [Google Scholar]
  • Datt B., 1999. A new reflectance index for remote sensing of chlorophyll content in higher plants: test using Eucalyptus leaves. J. Plant Physiol. 154: 30–36 [Google Scholar]
  • Gotelli N.J. and Ellison A.M., 2004. A primer of ecological statistics, Sinauer Associates, Inc., Sunderland, 528 p. [Google Scholar]
  • Gratani L., Covone F. and Larcher W., 2006. Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees 20: 549–558 [CrossRef] [Google Scholar]
  • Haupt W. and Scheuerlein R., 1990. Chloroplast movement. Plant Cell Environ. 13: 595–614 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Hiscox J.D. and Israelstam G.F., 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57: 1332–1334 [CrossRef] [Google Scholar]
  • Hoel B.O. and Solhaug K.A., 1998. Effect of irradiance on chlorophyll estimation with the Minolta SPAD-502 leaf chlorophyll meter. Ann. Bot. 82: 389–392 [CrossRef] [Google Scholar]
  • Jifon J.L., Syvertsen J.P. and Whaley E., 2005. Growth environment and leaf anatomy affect non-destructive estimates of chlorophyll and nitrogen in Citrus sp. leaves. J. Am. Soc. Hortic. Sci. 130: 152–158 [Google Scholar]
  • Markwell J., Osterman J.C. and Mitchell J.L., 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 46: 467–472 [CrossRef] [PubMed] [Google Scholar]
  • Mediavilla S. and Escudero A., 2003. Photosynthetic capacity, integrated over the lifetime of a leaf, is predicted to be independent of leaf longevity in some tree species. New Phytol. 159: 203–211 [CrossRef] [Google Scholar]
  • Monge O.A. and Bugbee B., 1992. Inherent limitations of non-destructive chlorophyll meters: a comparison of two types of meters. HortScience 27: 69–71 [PubMed] [Google Scholar]
  • Moran J.A., Mitchell A.K., Goodmanson G. and Stockburguer K.A., 2000. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiol. 20: 1113–1120 [PubMed] [Google Scholar]
  • Neufeld H.S., Chappelka A.H., Somers G.L., Burkey K.O., Davison A.W. and Finkelstein P.L., 2006. Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower. Photosynth. Res. 87: 281–286 [CrossRef] [PubMed] [Google Scholar]
  • Peguero-Pina J.J., Morales F. and Gil-Pelegrín E., 2008. Frost damage in Pinus sylvestris L. stems assessed by chlorophyll fluorescence in cortical bark chlorenchyma. Ann. For. Sci. 65: 813. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pen˜uelas J. and Filella I., 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 3: 151–156 [CrossRef] [Google Scholar]
  • Pinkard E.A., Patel V. and Mohammed C., 2006. Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter. For. Ecol. Manage 223: 211–217 [CrossRef] [Google Scholar]
  • Porra R.J., 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73: 149–156 [CrossRef] [PubMed] [Google Scholar]
  • Richardson A.D., Duigan S.P. and Berlyn G.P., 2002. An evaluation of non-invasive methods to estimate foliar chlorophyll content. New Phytol. 153: 185–194 [CrossRef] [Google Scholar]
  • Sibley J.L., Eakes D.J., Gilliam C.H., Keever G.J., Dozier W.A. and Himelrick D.G., 1996. Foliar SPAD-502 meter values, nitrogen levels, and extractable chlorophyll for red maple selection. HortScience 31: 468–470 [Google Scholar]
  • Sokal R.R. and Rohlf F.J., 1995. Biometry, Freeman and Company, New York, 887 p. [Google Scholar]
  • Tait M.A. and Hik D.S., 2003. Is dimethylsulfoxide a reliable solvent for extracting chlorophyll under field conditions? Photosynth. Res. 78: 87–91 [Google Scholar]
  • Terashima I. and Saeki T., 1983. Light environment within a leaf. Plant Cell Physiol. 24: 1493–1501 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Thompson J.A., Schweitzer L.E. and Nelson R.L., 1996. Association of specific leaf weight, an estimate of chlorophyll, and chlorophyll concentration with apparent photosynthesis in soybean. Photosynth. Res. 49: 1–10 [CrossRef] [PubMed] [Google Scholar]
  • Uddling J., Gelang-Alfredsson J., Piikki K. and Pleijel H., 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91: 37–46 [CrossRef] [PubMed] [Google Scholar]
  • Wang Q.B., Chen M.J. and Li Y.C., 2004. Nondestructive and rapid estimation of leaf chlorophyll and nitrogen status of peace lily using a chlorophyll meter. J. Plant Nutr. 27: 557–569 [CrossRef] [Google Scholar]
  • Wellburn A.R., 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144: 307–313 [Google Scholar]
  • Wood C.W., Tracy P.W., Reeves D.W., Edmisten and K.L., 1992. Determination of cotton nitrogen status with a hand-held chlorophyll meter. J. Plant Nutr. 15: 1435–1448 [CrossRef] [Google Scholar]
  • Yamamoto A., Nakamura T., Adu-Gyamfi J.J. and Saigusa M., 2002. Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). J. Plant Nutr. 25: 2295–2301 [CrossRef] [Google Scholar]