Free Access
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 209
Number of page(s) 6
Published online 01 February 2010
  • Augustin S., Courtin C. and Delplanque A., 1993. Preferences of Chrysomela (= Melasoma) populi L. and Chrysomela tremulae F. (Coleoptera: Chrysomelidae) for Leuce section poplar clones. J. Appl. Entomol. 115: 370–378 [CrossRef] [Google Scholar]
  • Bjorkman C., 1998. Opposite, linear and nonlinear effects of plant stress on a galling aphid. Scand. J. For. Res. 13: 177–183 [CrossRef] [Google Scholar]
  • Braatne J.H., Hinckley T.M. and Stettler R.F., 1992. Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Populus deltoïdes and their F1 hybrids. Tree Physiol. 11: 325–339 [PubMed] [Google Scholar]
  • Bradshaw H.D., Ceulemans R., Davis J. and Stettler R., 2000. Emerging model systems on plant biology: poplar (Populus) as a model forest tree. J. Growth Regul. 19: 306–313 [CrossRef] [Google Scholar]
  • Chaves M.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo C.P.P., Osorio M.L., Carvalho I., Faria T. and Pinheiro C., 1991. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot. 89: 907–916 [Google Scholar]
  • Chen S., Wang S., Altman A. and Hüttermann A., 1997. Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiol. 17: 797–803 [PubMed] [Google Scholar]
  • Cochard H., Forestier S. and Ameglio T., 2001. A new validation of the Scholander pressure chamber technique based on stem diameter variations. J. Exp. Bot. 52(359): 1361–1365. [CrossRef] [PubMed] [Google Scholar]
  • Cronin G. and Hay M.E., 1996. Within-plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth-differentiation balance hypothesis. Oecologia 105: 361–368 [CrossRef] [PubMed] [Google Scholar]
  • Dobbertin M., 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124: 319–333 [Google Scholar]
  • Herms D.A. and Mattson W.J., 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67: 283–335 [CrossRef] [Google Scholar]
  • Huberty A.F. and Denno R.F., 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85: 1383–1398 [CrossRef] [Google Scholar]
  • IPCC, 2001. Climate change 2001. The scientific basis. Genève, IPCC, 944 p. [Google Scholar]
  • Kagata H. and Ohgushi T., 2006. Nitrogen homeostasis in a willow leaf beetle, Plagiodera versicolora, is independent of host plant quality. Entomol. Exp. Appl. 118: 105–110 [CrossRef] [Google Scholar]
  • Koricheva J., Larsson S. and Haukioja E., 1998. Insect performance on experimentally stressed woody plants: a meta-analysis. Annu. Rev. Entomol. 43: 195–216 [CrossRef] [PubMed] [Google Scholar]
  • Kramer P.J., 1988. Measurement of plant water status: historical perspectives and current concerns. Irrig. Sci. 9: 275–287 [CrossRef] [Google Scholar]
  • Loustau D., Bosc A., Colin A., Ogée J., Davi H., François C., Dulrene E., Déqué M., Cloppet E., Arronays D., Le Bas C., Saby N., Pignard G., Hamza N., Granier A., Bréda N., Ciais P., Viovy N. and Delage F., 2005. Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiol. 25: 813–823 [PubMed] [Google Scholar]
  • Marron N., Delay D., Petit J.M., Dreyer E., Kahlem G., Delmotte F.M. and Brignolas F., 2002. Physiological traits of two Populus × euramericana clones, Luisa Avanzo and Dorskamp, during a water stress and re-watering cycle. Tree Physiol. 22: 849–858 [PubMed] [Google Scholar]
  • Matsuki M. and MacLean S.F., 1994. Effects of different leaf traits on growth rates of insect herbivores on willows. Oecologia 100: 141–152 [CrossRef] [PubMed] [Google Scholar]
  • Mattson W.J. and Haack R.A., 1987. The role of drought in outbreaks of plant-eating insects. BioScience 37: 110–118 [CrossRef] [Google Scholar]
  • Meehl G.A. and Tebaldi C., 2004. More intense, more frequent, and longer lasting heat waves in the 21st Century. Science 305: 994–997 [Google Scholar]
  • Price P.W. 1991. The plant vigor hypothesis and herbivore attack. Oikos 62: 244–251. [CrossRef] [Google Scholar]
  • Roberts S.W., Strain B.R. and Knoerr K.R., 1980. Seasonal patterns of leaf water relations in four co-occuring forest tree species: parameters from pressure-volume curves. Oecologia 46: 330–337 [PubMed] [Google Scholar]
  • Saxe H., Cannell M.G.R., Johnsen B., Ryan M.G. and Vourlitis G., 2001. Tree and forest functioning in response to global warming. New Phytol. 149: 369–399 [CrossRef] [Google Scholar]
  • Stamp N. 2004. Can the growth-differentiation balance hypothesis be tested rigorously? Oikos 107: 439–448. [CrossRef] [Google Scholar]
  • Tschaplinski T.J., Tuskan G.A., Gebre G.M. and Todd D.E., 1998. Drought resistance of two hybrid Populus clones grown in a large-scale plantation. Tree Physiol. 18: 653–658 [PubMed] [Google Scholar]
  • Turner N.C., 1988. Measurement of plant water status by the pressure chamber technique. Irrig. Sci. 9: 289–308 [CrossRef] [Google Scholar]
  • Van Volkenburgh E., 1999. Leaf expansion – an integrating behaviour. Plant Cell Environ. 22: 1463–1473 [Google Scholar]
  • White T.C.R., 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology 50: 905–909 [CrossRef] [Google Scholar]
  • White T.C.R., 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63: 90–105 [CrossRef] [PubMed] [Google Scholar]
  • Zlatev Z.S., 2005. Effects of water stress on leaf water relations of young bean plants. Central Eur. J. Agric. 6: 5–14 [Google Scholar]