Free Access
Issue
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 208
Number of page(s) 10
DOI https://doi.org/10.1051/forest/2009101
Published online 01 February 2010
  • Allis C.D., Jenuwein T., Reinberg D. and Caparros M.-L., 2007. Epigenetics, Cold Spring Harbor Laboratory Press, New York, 502 p. [Google Scholar]
  • Bernacchia G., Primo A., Giorgetti L., Pitto L. and Cella R., 1998. Carrot DNA methyltransferase is encoded by two classes of genes with differing patterns of expression. Plant J. 13: 317–329 [CrossRef] [PubMed] [Google Scholar]
  • Bogeat-Triboulot M.-B., Brosche M., Renaut J., Jouve L., Le Thiec D., Fayyaz P., Vinocur B., Witters E., Laukens K., Teichmann T., Altman A., Hausman J.-F., Polle A., Kangasjärvi J. and Dreyer E., 2007. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol. 143: 876–892 [CrossRef] [PubMed] [Google Scholar]
  • Bonhomme L., Barbaroux C., Monclus R., Morabito D., Berthelot A., Villar M., Dreyer E. and Brignolas F., 2008. Genetic variation in productivity, leaf traits and carbon isotope discrimination in hybrid poplars cultivated on contrasting sites. Ann. For. Sci. 65: 503. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bonhomme L., Monclus R., Vincent D., Carpin S., Lomenech A.-M., Plomion C., Brignolas F. and Morabito D., 2009. Leaf proteome analysis of eight Populus × euramericana genotypes: genetic variation in drought response and in water-use efficiency involves photosynthesis-related proteins. Proteomics 9: 4121–4142 [CrossRef] [PubMed] [Google Scholar]
  • Boyko A. and Kovalchuk I., 2007. Epigenetic control of plant stress response. Environ. Mol. Mutagen. 49: 61–72 [CrossRef] [Google Scholar]
  • Braatne J.H., Hinckley T.M. and Stettler R.F., 1992. Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Populus deltoides and their F1 hybrids. Tree Physiol. 11: 325–339 [PubMed] [Google Scholar]
  • Causevic A., 2005. Étude comparative de quelques paramètres du contrôle épigénétique en relation avec le développement de lignées de betterave sucrière. Thèse de doctorat. Faculté des Sciences, Université Orléans, France, 170 p. [Google Scholar]
  • Causevic A., Delaunay A., Ounnar S., Righezza M., Delmotte F.M., Brignolas F., Hagège D. and Maury S., 2005. DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol. Biochem. 43: 681–691 [CrossRef] [PubMed] [Google Scholar]
  • Causevic A., Gentil M.-V., Delaunay A., El Soud W.A., Garcia Z., Pannetier C., Brignolas F., Hagège D. and Maury S., 2006. Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet. Planta 224: 812–827 [CrossRef] [PubMed] [Google Scholar]
  • Chen Z.J. and Tian L., 2007. Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim. Biophys. Acta 1769: 295–307 [PubMed] [Google Scholar]
  • Gehring M. and Henikoff S., 2007. DNA methylation dynamics in plant genomes. Biochim. Biophys. Acta 1769: 276–286 [PubMed] [Google Scholar]
  • Gentil M.-V. and Maury S., 2007. Characterization of epigenetic biomarkers using new molecular approaches. In: Varshney R. and Tuberosa R. (Eds.), Genomics-Assisted Crop Improvement: Genomics Approaches and Platforms, Springer, Dordrecht, pp. 351–377. [Google Scholar]
  • Kovarik A., Koukalovà B., Bezdìk M. and Opatrny Z., 1997. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor. Appl. Genet. 95: 301–306 [CrossRef] [Google Scholar]
  • Labra M., Ghiani A., Citterio S., Sgorbati S., Sala F., Vannini C., Ruffini-Castiglione M. and Bracale M., 2002. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. (Stuttg.) 4: 694–699 [CrossRef] [Google Scholar]
  • Loidl P., 2004. A plant dialect of the histone language. Trends Plant Sci. 9: 84–90 [CrossRef] [PubMed] [Google Scholar]
  • Marron N., Villar M., Dreyer E., Delay D., Boudouresque E., Petit J.M., Delmotte F.M., Guehl J. and Brignolas F., 2005. Diversity of leaf 4.7pt traits related to productivity in 31 Populus deltoides × Populus nigra clones. Tree Physiol. 25: 425–435 [PubMed] [Google Scholar]
  • Monclus R., Dreyer E., Villar M., Delmotte F.M., Delay D., Petit J.M., Barbaroux C., Le Thiec D., Bréchet C. and Brignolas F., 2006. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytol. 169: 765–777 [CrossRef] [PubMed] [Google Scholar]
  • Pavlopoulou A. and Kossida S., 2007. Plant cytosine-5 DNA methyltransferases: structure, function, and molecular evolution. Genomics 90: 530–541 [CrossRef] [PubMed] [Google Scholar]
  • Pipal A., Goralik-Schramel M., Lusser A., Lanzanova C., Sarg B., Loidl A., Lindner H., Rossi V. and Loidl P., 2003. Regulation and processing of maize histone deacetylase Hda1 by limited proteolysis. Plant Cell. 15: 1904–1917 [CrossRef] [PubMed] [Google Scholar]
  • Plomion C., Lalanne C., Claverol S., Meddour H., Kohler A., Bogeat-Triboulot M.-B., Barre A., Le Provost G., Dumazet H., Jacob D., Bastien C., Dreyer E., de Daruvar A., Guehl J.-M., Schmitter J.-M., Martin F. and Bonneu M., 2006. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 6: 6509–6527 [CrossRef] [PubMed] [Google Scholar]
  • Riddle N.C. and Richards E.J., 2002. The control of natural variation in cytosine methylation in Arabidopsis. Genetics 162: 355–363 [PubMed] [Google Scholar]
  • Roden J., van Volkenburgh E. and Hinckley T.M., 1990. Cellular basis for limitation of poplar leaf growth by water deficit. Tree Physiol. 6: 211–219 [PubMed] [Google Scholar]
  • Sabbah S., Raise M. and Tal M., 1995. Methylation of DNA in NaCl-adapted cells of potato. Plant Cell Rep. 14: 467–470 [PubMed] [Google Scholar]
  • Sridha S. and Wu K., 2006. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 46: 124–133 [CrossRef] [PubMed] [Google Scholar]
  • Tschaplinski T.J., Tuskan G.A. and Gunderson C.A., 1994. Water-stress tolerance of black and eastern cottonwood clone and four hybrid progeny. I. Growth, water relations and gas exchange. Can. J. For. Res. 24: 364–371 [CrossRef] [Google Scholar]
  • Tsuji H., Saika H., Tsutsumi N., Hirai A. and Nakazono M., 2006. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol. 47: 995–1003 [CrossRef] [PubMed] [Google Scholar]
  • Tuskan G.A. et al., 2006. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596–1604 [CrossRef] [PubMed] [Google Scholar]
  • Vaughn M.W., Tanurdzic M., Lippman Z., Jiang H., Carrasquillo R., Rabinowicz P.D., Dedhia N., McCombie W.R., Agier N., Bulski A., Colot V., Doerge R.W. and Martienssen R.A., 2007. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biology 5: e174. [PubMed] [Google Scholar]
  • Zhang X., Yazaki J., Sundaresan A., Cokus S., Chan S.W.-L., Chen H., Henderson I.R., Shinn P., Pellegrini M., Jacobsen S.E. and Ecker J.R., 2006. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126: 1189–1201 [CrossRef] [PubMed] [Google Scholar]
  • Zhang X., Shiu S., Cal A. and Borevitz J.O., 2008. Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genetics 4: e1000032. Doi:10.1371/journal.pgen.1000032. [Google Scholar]
  • Zilberman D., Gehring M., Tran R.K., Ballinger T. and Henikoff S., 2007. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics 39: 61–69 [CrossRef] [PubMed] [Google Scholar]