Free Access
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 203
Number of page(s) 9
Published online 01 February 2010
  • Agency U.S.E.P., 1994. Chlorophyll Determination, p. 4.
  • Arnon D.I., 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–15 [CrossRef] [PubMed]
  • Baldwin I.T., 1990. Herbivory simulation in ecological research. Trees 5: 91–93
  • Britton R.J., 1988. Physiological effects of natural and artificial defoliation on growth of young crops of lodgepole pine. Forestry 61: 165–175 [CrossRef]
  • Buysse J. and Merckx R., 1993. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 44: 1627–1629 [CrossRef]
  • Candy S.G., Elliott H.J., Bashford R. and Greener A., 1992. Modelling the impact of defoliation by the leaf beetle, Chrysoptharta bimaculata (Coleoptera: Chrysomelidae), on height of Eucalytpus regnans. For. Ecol. Manage. 54: 69–87 [CrossRef]
  • Cesaroli S., Scartazza A., Brugnoli E., Chaves M.M. and Pereira J.S., 2004. Effects of partial defoliation on carbon and nitrogen partitioning and photosynthetic carbon uptake by two-year-old cork oak (Quercus suber) saplings. Tree Physiol. 24: 83–90 [PubMed]
  • Chen Z., Kolb T.E. and Clancy K.M., 2001. Mechanisms of Douglas-fir resistance to western spruce budworm defoliation: bud burst phenology, photosynthetic compensation and growth rate. Tree Physiol. 21: 1159–1169 [PubMed]
  • Chen Z., Kolb T.E. and Clancy K.M., 2002. Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings. J. Econ. Entomol. 95: 587–594 [CrossRef] [PubMed]
  • Conrad K.A. and Dhileepan K., 2007. Pre-release evaluation of the efficacy of the leaf-sucking bug Carvalhotingis visenda (Heteroptera: Tingidae) as a biological control agent for cat’s claw creeper Macfadyena unguis-cati (Bignoniaceae). Biocontrol Sci. Tech. 17 (303–311). [CrossRef]
  • Dubois M., Gilles G.A., Hamilton J.K., Rebers P.A. and Smith F., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356 [CrossRef] [PubMed]
  • Floyd R.B., Farrow R.A. and Matsuki M., 2002. Variation in insect damage and growth in Eucalyptus globulus. Agric. For. Entomol. 4: 109–115 [CrossRef]
  • GENSTAT Committee, 1989. Genstat 5 reference manual. Clarendon Press, Oxford, UK.
  • Haukioja E., Ruohomiki K., Senn J., Suomela J. and Walls M., 1990. Consequences of herbivory in the mountain birch (Betula pubescens ssp torCuosa): importance of the functional organization of the tree. Oecologia 82: 238–247 [CrossRef] [PubMed]
  • Heichel G.H. and Turner N.C., 1983. CO2 assimilation of primary and regrowth foliage of red maple (Acer rubrum L.) and red oak (Quercus rubra L.): response to defoliation. Oecologia 57: 14–19 [CrossRef] [PubMed]
  • Hjältén J., 2004. Simulating herbivory: problems and possibilities. In: Weisser W.W. and Siemann E. (Eds.), Insects and ecosystem function, Springer-Verlag, Berlin, Germany, pp. 243–256.
  • Honkanen T., Haukioja E. and Kitunen V., 1999. Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Funct. Ecol. 13: 126–140 [CrossRef]
  • Honkanen T., Haukioja E. and Suomela J., 1994. Effects of simulated defoliation and debudding on needle and shoot growth in Scots pine (Pinus sylvestris): Implications of pant source/sink relationships for plant-herbivore studies. Funct. Ecol. 8: 631–639 [CrossRef]
  • Hoogesteger J. and Karlsson P.S., 1992. Effects of defoliation on radial stem growth and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa). Funct. Ecol. 6: 317–323 [CrossRef]
  • Loch A.D., 2005. Mortality and recovery of eucalypt beetle pest and beneficial arthropod populations after commercial application of the insecticide alpha-cypermethrin. For. Ecol. Manage. 217: 255–265 [CrossRef]
  • Loch A.D., 2006. Phenology of Eucalyptus weevil, Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae), and chrysomelid beetles in Eucalyptus globulus plantations in south-western Australia. Agric. For. Entomol. 8: 155–165 [CrossRef]
  • Loch A.D. and Floyd R.B., 2001. Insect pests of Tasmanian blue gum, Eucalyptus globulus, in south-western Australia: History, current perspectives and future prospects. Aust. Ecol. 26: 458–466 [CrossRef]
  • Lyytikainen-Saarenmaa P., 1999. The responses of Scots pine, Pinus sylvestris, to natural and artificial defoliation stress. Ecol. Appl. 9: 469–474 [CrossRef]
  • McLeod S., 1992. Determination of total soil and plant nitrogen using a microdistillation unit in a continous flow analyser. Anal. Chim. Acta 266: 113–117 [CrossRef]
  • Mithöfer A., Wanner G. and Boland W., 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137: 1160–1168
  • Nahrung H.F., 2003. Reproductive ecology of Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae). Ph.D. thesis, School of Agricultural Science, University of Tasmania.
  • Ovaska J., Walls M. and Vapaavuori E., 1993. Combined effects of partial defoliation and nutrient availability in cloned Betula pendula saplings. 2. Changes in net photosynthesis and related biochemical properties. J. Exp. Bot. 44: 1395–1402
  • Palacio S., Maestro M. and Montserrat-Marti G., 2007. Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59: 34–42 [CrossRef]
  • Piene H. and Little C.H.A., 1990. Spruce budworm defoliation and growth loss in young balsam fir: artificial defoliation of potted trees. Can. J. For. Res. 20: 902–909 [CrossRef]
  • Pinkard E.A., 2003. Physiological and growth responses related to pattern and severity of green pruning in young Eucalyptus globulus. For. Ecol. Manage. 182: 231–245 [CrossRef]
  • Pinkard E.A., Battaglia M. and Mohammed C.L., 2007. Defoliation and nitrogen effects on photosynthesis and growth of Eucalyptus globulus. Tree Physiol. 27: 1053–1063 [PubMed]
  • Pinkard E.A. and Beadle C.L., 1998. Aboveground biomass partitioning and crown architecture of Eucalyptus nitens following green pruning. Can. J. For. Res. 28: 1419–1428 [CrossRef]
  • Pinkard E.A. and Beadle C.L., 1998. Effects of green pruning on growth and stem shape of Eucalyptus nitens (Deane and Maiden) Maiden. New For. 15: 107–126 [CrossRef]
  • Pinkard E.A., Beadle C.L., Davidson N.J. and Battaglia M., 1998. Photosynthetic responses of Eucalyptus nitens (Deane and Maiden) Maiden to green pruning. Trees 12: 119–129
  • Pinkard E.A., Patel V. and Mohammed C.L., 2006. Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter. For. Ecol. Manage. 223: 211–217 [CrossRef]
  • Reich P.B., Waiters M.B., Krause S.C., Vanderklein D.W., Raffa K.F. and Tabone T., 1993. Growth, nutrition and gas exchange of Pinus resinosa following artificial defoliation. Trees 7: 67–77
  • Sanchez-Martinez G. and Wagner M.R., 1994. Sawfly (Hymenoptera: Diprionidae) and artificial defoliation affects above- and below-ground growth of ponderosa pine seedlings. J. Econ. Entomol. 87: 1038–1045
  • Steinbauer M.J., Taylor G.S. and Madden J.L., 1997. Comparison of damage to Eucalyptus caused by Amorbus obscuricornis and Gelonus tasmanicus. Entomol. Exp. Appl. 82: 175–180 [CrossRef]
  • Stone C., Matsuki M. and Carnegie A., 2003. Pest and disease assesment in young eucalypt plantations: field manual for using the Crown Damage Index, National Forest inventory, Bureau of Rural Sciences, Canberra, 30 p.
  • Trumble J.T., Kolodny-Hirsch D.M. and Ting I.P., 1993. Plant compensation for arthropod herbivory. Annu. Rev. Entomol. 38: 93–119 [CrossRef]
  • Turnbull T.L., Adams M.A. and Warren C.R., 2007. Increased photosynthesis following partial defoliation of field-grown Eucalyptus globulus seedlings is not caused by increased leaf nitrogen. Tree Physiol. 27: 1481–1492 [PubMed]
  • Vanderklein D.W. and Reich P.B., 1999. The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. New Phytol. 144: 121–132 [CrossRef]
  • Watt M.S., Whitehead D., Kriticos D.J., Gous S.F. and Richardson B., 2007. Using a process-based model to analyse compensatory growth in response to defoliation: Simulating herbivory by a biological control agent. Biol. Control 43: 119–129 [CrossRef]