Free Access
Issue
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 203
Number of page(s) 9
DOI https://doi.org/10.1051/forest/2009096
Published online 01 February 2010
  • Agency U.S.E.P., 1994. Chlorophyll Determination, p. 4. [Google Scholar]
  • Arnon D.I., 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–15 [CrossRef] [PubMed] [Google Scholar]
  • Baldwin I.T., 1990. Herbivory simulation in ecological research. Trees 5: 91–93 [Google Scholar]
  • Britton R.J., 1988. Physiological effects of natural and artificial defoliation on growth of young crops of lodgepole pine. Forestry 61: 165–175 [CrossRef] [Google Scholar]
  • Buysse J. and Merckx R., 1993. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 44: 1627–1629 [CrossRef] [Google Scholar]
  • Candy S.G., Elliott H.J., Bashford R. and Greener A., 1992. Modelling the impact of defoliation by the leaf beetle, Chrysoptharta bimaculata (Coleoptera: Chrysomelidae), on height of Eucalytpus regnans. For. Ecol. Manage. 54: 69–87 [CrossRef] [Google Scholar]
  • Cesaroli S., Scartazza A., Brugnoli E., Chaves M.M. and Pereira J.S., 2004. Effects of partial defoliation on carbon and nitrogen partitioning and photosynthetic carbon uptake by two-year-old cork oak (Quercus suber) saplings. Tree Physiol. 24: 83–90 [PubMed] [Google Scholar]
  • Chen Z., Kolb T.E. and Clancy K.M., 2001. Mechanisms of Douglas-fir resistance to western spruce budworm defoliation: bud burst phenology, photosynthetic compensation and growth rate. Tree Physiol. 21: 1159–1169 [PubMed] [Google Scholar]
  • Chen Z., Kolb T.E. and Clancy K.M., 2002. Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings. J. Econ. Entomol. 95: 587–594 [CrossRef] [PubMed] [Google Scholar]
  • Conrad K.A. and Dhileepan K., 2007. Pre-release evaluation of the efficacy of the leaf-sucking bug Carvalhotingis visenda (Heteroptera: Tingidae) as a biological control agent for cat’s claw creeper Macfadyena unguis-cati (Bignoniaceae). Biocontrol Sci. Tech. 17 (303–311). [CrossRef] [Google Scholar]
  • Dubois M., Gilles G.A., Hamilton J.K., Rebers P.A. and Smith F., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356 [Google Scholar]
  • Floyd R.B., Farrow R.A. and Matsuki M., 2002. Variation in insect damage and growth in Eucalyptus globulus. Agric. For. Entomol. 4: 109–115 [CrossRef] [Google Scholar]
  • GENSTAT Committee, 1989. Genstat 5 reference manual. Clarendon Press, Oxford, UK. [Google Scholar]
  • Haukioja E., Ruohomiki K., Senn J., Suomela J. and Walls M., 1990. Consequences of herbivory in the mountain birch (Betula pubescens ssp torCuosa): importance of the functional organization of the tree. Oecologia 82: 238–247 [CrossRef] [PubMed] [Google Scholar]
  • Heichel G.H. and Turner N.C., 1983. CO2 assimilation of primary and regrowth foliage of red maple (Acer rubrum L.) and red oak (Quercus rubra L.): response to defoliation. Oecologia 57: 14–19 [CrossRef] [PubMed] [Google Scholar]
  • Hjältén J., 2004. Simulating herbivory: problems and possibilities. In: Weisser W.W. and Siemann E. (Eds.), Insects and ecosystem function, Springer-Verlag, Berlin, Germany, pp. 243–256. [Google Scholar]
  • Honkanen T., Haukioja E. and Kitunen V., 1999. Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Funct. Ecol. 13: 126–140 [CrossRef] [Google Scholar]
  • Honkanen T., Haukioja E. and Suomela J., 1994. Effects of simulated defoliation and debudding on needle and shoot growth in Scots pine (Pinus sylvestris): Implications of pant source/sink relationships for plant-herbivore studies. Funct. Ecol. 8: 631–639 [CrossRef] [Google Scholar]
  • Hoogesteger J. and Karlsson P.S., 1992. Effects of defoliation on radial stem growth and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa). Funct. Ecol. 6: 317–323 [CrossRef] [Google Scholar]
  • Loch A.D., 2005. Mortality and recovery of eucalypt beetle pest and beneficial arthropod populations after commercial application of the insecticide alpha-cypermethrin. For. Ecol. Manage. 217: 255–265 [CrossRef] [Google Scholar]
  • Loch A.D., 2006. Phenology of Eucalyptus weevil, Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae), and chrysomelid beetles in Eucalyptus globulus plantations in south-western Australia. Agric. For. Entomol. 8: 155–165 [CrossRef] [Google Scholar]
  • Loch A.D. and Floyd R.B., 2001. Insect pests of Tasmanian blue gum, Eucalyptus globulus, in south-western Australia: History, current perspectives and future prospects. Aust. Ecol. 26: 458–466 [CrossRef] [Google Scholar]
  • Lyytikainen-Saarenmaa P., 1999. The responses of Scots pine, Pinus sylvestris, to natural and artificial defoliation stress. Ecol. Appl. 9: 469–474 [CrossRef] [Google Scholar]
  • McLeod S., 1992. Determination of total soil and plant nitrogen using a microdistillation unit in a continous flow analyser. Anal. Chim. Acta 266: 113–117 [CrossRef] [Google Scholar]
  • Mithöfer A., Wanner G. and Boland W., 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137: 1160–1168 [Google Scholar]
  • Nahrung H.F., 2003. Reproductive ecology of Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae). Ph.D. thesis, School of Agricultural Science, University of Tasmania. [Google Scholar]
  • Ovaska J., Walls M. and Vapaavuori E., 1993. Combined effects of partial defoliation and nutrient availability in cloned Betula pendula saplings. 2. Changes in net photosynthesis and related biochemical properties. J. Exp. Bot. 44: 1395–1402 [Google Scholar]
  • Palacio S., Maestro M. and Montserrat-Marti G., 2007. Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59: 34–42 [CrossRef] [Google Scholar]
  • Piene H. and Little C.H.A., 1990. Spruce budworm defoliation and growth loss in young balsam fir: artificial defoliation of potted trees. Can. J. For. Res. 20: 902–909 [CrossRef] [Google Scholar]
  • Pinkard E.A., 2003. Physiological and growth responses related to pattern and severity of green pruning in young Eucalyptus globulus. For. Ecol. Manage. 182: 231–245 [CrossRef] [Google Scholar]
  • Pinkard E.A., Battaglia M. and Mohammed C.L., 2007. Defoliation and nitrogen effects on photosynthesis and growth of Eucalyptus globulus. Tree Physiol. 27: 1053–1063 [PubMed] [Google Scholar]
  • Pinkard E.A. and Beadle C.L., 1998. Aboveground biomass partitioning and crown architecture of Eucalyptus nitens following green pruning. Can. J. For. Res. 28: 1419–1428 [CrossRef] [Google Scholar]
  • Pinkard E.A. and Beadle C.L., 1998. Effects of green pruning on growth and stem shape of Eucalyptus nitens (Deane and Maiden) Maiden. New For. 15: 107–126 [CrossRef] [Google Scholar]
  • Pinkard E.A., Beadle C.L., Davidson N.J. and Battaglia M., 1998. Photosynthetic responses of Eucalyptus nitens (Deane and Maiden) Maiden to green pruning. Trees 12: 119–129 [Google Scholar]
  • Pinkard E.A., Patel V. and Mohammed C.L., 2006. Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter. For. Ecol. Manage. 223: 211–217 [CrossRef] [Google Scholar]
  • Reich P.B., Waiters M.B., Krause S.C., Vanderklein D.W., Raffa K.F. and Tabone T., 1993. Growth, nutrition and gas exchange of Pinus resinosa following artificial defoliation. Trees 7: 67–77 [Google Scholar]
  • Sanchez-Martinez G. and Wagner M.R., 1994. Sawfly (Hymenoptera: Diprionidae) and artificial defoliation affects above- and below-ground growth of ponderosa pine seedlings. J. Econ. Entomol. 87: 1038–1045 [Google Scholar]
  • Steinbauer M.J., Taylor G.S. and Madden J.L., 1997. Comparison of damage to Eucalyptus caused by Amorbus obscuricornis and Gelonus tasmanicus. Entomol. Exp. Appl. 82: 175–180 [CrossRef] [Google Scholar]
  • Stone C., Matsuki M. and Carnegie A., 2003. Pest and disease assesment in young eucalypt plantations: field manual for using the Crown Damage Index, National Forest inventory, Bureau of Rural Sciences, Canberra, 30 p. [Google Scholar]
  • Trumble J.T., Kolodny-Hirsch D.M. and Ting I.P., 1993. Plant compensation for arthropod herbivory. Annu. Rev. Entomol. 38: 93–119 [CrossRef] [Google Scholar]
  • Turnbull T.L., Adams M.A. and Warren C.R., 2007. Increased photosynthesis following partial defoliation of field-grown Eucalyptus globulus seedlings is not caused by increased leaf nitrogen. Tree Physiol. 27: 1481–1492 [PubMed] [Google Scholar]
  • Vanderklein D.W. and Reich P.B., 1999. The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. New Phytol. 144: 121–132 [CrossRef] [Google Scholar]
  • Watt M.S., Whitehead D., Kriticos D.J., Gous S.F. and Richardson B., 2007. Using a process-based model to analyse compensatory growth in response to defoliation: Simulating herbivory by a biological control agent. Biol. Control 43: 119–129 [CrossRef] [Google Scholar]