Free Access
Issue
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 212
Number of page(s) 9
DOI https://doi.org/10.1051/forest/2009105
Published online 01 February 2010
  • Al-Naimi F.A., Garett K.A. and Bockus W.W., 2005. Competition, facilitation, and niche differentiation in two foliar pathogens. Oecologia 143: 449–457 [CrossRef] [PubMed] [Google Scholar]
  • Ayres P.G., 1976. Natural resistance to oak mildew. Arboric. J. 3: 23–29 [Google Scholar]
  • Benbouza H., Jacquemin J.-M., Baudoin J.-P. and Mergeai G., 2006. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol. Agron. Soc. Environ. 10: 77–81 [Google Scholar]
  • Braun U., 1995. The powdery mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Stuttgart, New York. [Google Scholar]
  • Brose U., 2008. Complex food webs prevent competitive exclusion among producer species. Proc. R. Soc. B. 275(1650): 2507–2514. [Google Scholar]
  • Butin H. H., 1995. Tree diseases and disorders: causes, biology, and control in forest and amenity trees, Oxford University Press, Oxford, 252 p. [Google Scholar]
  • Crous P.W., Groenewald J.Z., Pongpanich K., Himaman W., Arzanlou M. and Wingfield M.J., 2004. Cryptic speciation and host specificity among Mycosphaerella spp. occurring on Australian Acacia species grown as exotics in the tropics. Studies Mycol. 50 Special Issue, Part 2: 457–469. [Google Scholar]
  • Cunnington J.H., Takamatsu S., Lawrie A.C. and Pascoe I.G., 2003. Molecular identification of anamorphic powdery mildews (Erysiphales). Aust. Plant Pathol. 32: 421–428 [CrossRef] [Google Scholar]
  • Delye C. and Corio-Costet M.-F., 1998. Origin of primary infections of grape by Uncinula necator. RAPD analysis discriminates two biotypes. Mycol. Res. 102: 283–288 [Google Scholar]
  • Dutech C., Enjalbert J., Fournier E., Delmotte F., Barrès B., Carlier J., Tharreau D. and Giraud T., 2007. Challenges of microsatellite isolation in fungi. Fungal. Genet. Biol. 44: 933–949 [CrossRef] [PubMed] [Google Scholar]
  • Edwards M.C. and Ayres P.G., 1982. Seasonal changes in resistance of Quercus petraea (sessile oak) leaves to Microsphaera alphitoides. Trans. Br. Mycol. Soc. 78: 569–571 [CrossRef] [Google Scholar]
  • Fournier E. and Giraud T., 2008. Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble. J. Evol. Biol. 21: 122–132 [PubMed] [Google Scholar]
  • Griffon E. and Maublanc A., 1912. Les Microsphaera des chênes. Bull. Soc. Mycol. F. 28: 88–104 [Google Scholar]
  • Hebert P.D.N., Cywinska A., Ball S.L. and deWaard J.R., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond., B, Biol. Sci. 270: 313–321 [Google Scholar]
  • Heuser T. and Zimmer W., 2002. Quantitative analysis of phytopathogenic ascomycota on leaves of pedunculate oaks (Quercus robur L.) by real-time PCR. FEMS Microbiol. Lett. 209: 295–299 [CrossRef] [PubMed] [Google Scholar]
  • Kiss L., 1998. Natural occurrence of Ampelomyces mycoparasites in mycelia of powdery mildew fungi. New Phytol. 140: 709–714 [CrossRef] [Google Scholar]
  • Kong P., Hong C., Richardson P.A. and Gallegly M.E., 2003. Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. Fungal. Genet. Biol. 39: 238–249 [CrossRef] [Google Scholar]
  • Limkaisang S., Kom-un S., Luiz Furtado E., Liew W.K., Salleh B., Sato Y. and Takamatsu S., 2005. Molecular phylogenetic and morphological analyses of Oïdium heveae, a powdery mildew of rubber tree. Mycoscience 46: 220–226 [CrossRef] [Google Scholar]
  • Limkaisang S., Cunnington J.H., Liew K.W., Salleh B., Sato Y., Divarangkoon R., Fangfuk W., To-anun C. and Takamatsu S., 2006. Molecular phylogenetic analyses reveal a close relationship between powdery mildew fungi on some tropical trees and Erysiphe alphitoides, an oak powdery mildew. Mycoscience 47: 327–335 [CrossRef] [Google Scholar]
  • Lowe T., Shareifkin J., Yang S.Q. and Dieffenbach C.W., 1990. A computer program for selection of oligonucleotide primers for polymerase chain reaction. Nucleic Acids Res. 18: 1757–1761 [CrossRef] [PubMed] [Google Scholar]
  • Mmbaga M.T., Klopfenstein N.B., Kim M.-S. and Mmbaga N.C., 2004. PCR-based identification of Erysiphe pulchra and Phyllactinia guttata from Cornus florida using ITS-specific primers. Eur. J. For. Pathol. 34: 321–328 [CrossRef] [Google Scholar]
  • Montarry J., Cartolaro P., Delmotte F., Jolivet J. and Willocquet L., 2008. Genetic structure and aggressiveness of Erysiphe necator populations during grapevine powdery mildew epidemics, Appl. Environ. Microbiol. 74: 6327–6332 [CrossRef] [Google Scholar]
  • Montarry J., Cartolaro P., Richard-Cervera S. and Delmotte F., 2009. Spatio-temporal distribution of Erysiphe necator genetic groups and their relationship with disease levels in vineyards. Eur. J. Plant Pathol. 123: 61–70 [CrossRef] [Google Scholar]
  • Mougou A., Dutech C. and Desprez-Loustau M.-L., 2008. New insights into the identity and origin of the causal agent of oak powdery mildew in Europe. For. Pathol. 38: 275–287 [CrossRef] [Google Scholar]
  • Newsham K.K., Low M.N.R., Mcleod A.R., Greenslade P.D. and Emmett B.A., 1997. Ultraviolet-B radiation influences the abundance and distribution of phylloplane fungi on pedunculate oak (Quercus robur). New Phytol. 136: 287–297 [CrossRef] [Google Scholar]
  • Newsham K.K., Oxborough K., White R., Greenslade P.D. and Mcleod A.R., 2000. UV-B radiation constrains the photosynthesis of Quercus robur through impacts on the abundance of Microsphaera alphitoides. For. Pathol. 30: 265–275 [CrossRef] [Google Scholar]
  • Nilsson R.H., Kristiansson E., Ryberg M., Hallenberg N. and Larsson K.H., 2008. Intraspecific ITS variability in the Kingdom Fungi as expressed in the International Sequence Databases and its implications for molecular species identification. Evol. Bioinf. 4: 193–201 [Google Scholar]
  • Orita M., Iwahana H., Kanazawa H., Hayashi K. and Sekiya T., 1989. Detection of Polymorphisms of Human DNA by Gel Electrophoresis as SSCPs. Proc. Natl. Acad. Sci. USA 86: 2766–70 [CrossRef] [Google Scholar]
  • Price P.W., Westoby M., Rice B., Atsatt P.R., Fritz R.S., Thompson J.N. and Mobley K., 1986. Parasite mediation in ecological interactions. Ann. Rev. Ecol. System. 17: 487–505 [CrossRef] [Google Scholar]
  • Roll-Hansen F., 1961. Microsphaera hypophylla Nevodovskij (M. silvatica Vlasov), an oak powdery milfew fungus. Rep. Norw. For. Res. Inst. 17: 37–61 [Google Scholar]
  • Rozen S. and Skaletsky H.J., 2000. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S. and Misener S. (Eds.), Bioinformatics methods and protocols: Methods in molecular biology, Humana Press, Totowa, NJ, pp. 365–386. [Google Scholar]
  • Saenz G.S. and Taylor J.W., 1999. Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer ribosomal DNA sequences. Can. J. Bot. 77: 150–168 [CrossRef] [Google Scholar]
  • Sunnucks P., Wilson A.C.C., Beheregaray L.B., Zenger K., French J. and Taylor A.C., 2000. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol. Ecol. 9: 1699–1710 [CrossRef] [PubMed] [Google Scholar]
  • Takamatsu S., 2004. Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal DNA sequences. Mycoscience 45: 147–157 [CrossRef] [Google Scholar]
  • Takamatsu S., Bolay A., Limkaisang S., Kom-un S. and To-anun C., 2006. Identity of a powdery mildew fungus occuring on Paeonia and its relationship with Erysiphe hypophylla on oak. Mycoscience 47: 367–373 [CrossRef] [Google Scholar]
  • Takamatsu S., Braun U., Limkaisang S., Kom-un S., Sato Y. and Cunnington J.H., 2007. Phylogeny and taxonomy of the oak powdery mildew Erysiphe alphitoides sensu lato. Mycol. Res. 111: 809–826 [CrossRef] [PubMed] [Google Scholar]
  • Takamatsu S., Inagaki M., Niinomi S., Khodaparast S.A., Shin H.-D., Grigaliunaite B. and Havrylenko M., 2008. Comprehensive molecular phylogenetic analysis and evolution of the genus Phyllactinia (Ascomycota: Erysiphales) and its allied genera. Mycol. Res. 112: 299–315 [CrossRef] [PubMed] [Google Scholar]
  • Taylor J.W., Turner E., Townsend J.P., Dettman J.R. and Jacobson D., 2006. Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philo. Trans. R. Soc. Lond., B, Biol. Sci. 361: 1947–1963 [CrossRef] [Google Scholar]
  • Viennot-Bourgin G., 1949. Les champignons parasites des plantes cultivées, Masson, Paris, 755 p. [Google Scholar]
  • Viennot-Bourgin G., 1968. Note sur les Erysiphacées. Bull. Soc. Mycol. Fr. 84: 117–118 [Google Scholar]
  • White T.J., Bruns T., Lee S. and Taylor J., 1990. Genetics and evolution in amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis M., Gelfand D., Sninsky J. and White T. (Eds.), PCR protocols: a guide to methods and applications, Academic Press, Orlando, pp. 315–322. [Google Scholar]
  • Zolan M.E. and Pukkila P.J., 1986. Inheritance of DNA methylation in Coprinus cinereus. Mol. Cell. Biol. 6: 195–200 [PubMed] [Google Scholar]