Free Access
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 211
Number of page(s) 6
Published online 01 February 2010
  • Baraloto C., Goldberg D.E. and Bonal D., 2005. Performance trade-offs among tropical tree seedlings in contrasting microhabitats. Ecology 86: 2461–2472 [Google Scholar]
  • Biddington N.L., 1986. The effects of mechanically-induced stress in plants – a review. Plant Growth Regul. 4: 103–123 [CrossRef] [Google Scholar]
  • Boyer N., 1967. Modifications de la croissance de la tige de Bryone (Bryonia dioica) à la suite d’irritations tactiles. C. R. Acad. Sci. 264: 2114–2117 [Google Scholar]
  • Brokaw N.V.L., 1985. Gap-phase regeneration in a tropical forest. Ecology 66: 682–687 [CrossRef] [Google Scholar]
  • Chazdon R.L. and Fetcher N., 1984. Light environments of tropical forests. In: Medina E., Mooney H.A. and Vazquez-Yanes C. (Eds.), Physiological ecology of plants of the wet tropics, Junk, The Hague, Netherlands, pp. 27–36. [Google Scholar]
  • Coomes D.A. and Grubb P.J., 1998. Responses of juvenile trees to above- and beloweground competition in nutrient-starved amazonian rain forest. Ecology 79: 768–782 [CrossRef] [Google Scholar]
  • Coutand C., Moulia B., Frizot N., Mauget J.C. and Julien J.-L., 1997. An experimental method for quantitative characterization of plant thigmomorphogenesis. In: Jeronimidis G. and Vincent J.F.V. (Eds.), Plant biomechanics, Centre for Biomimetics, Reading. [Google Scholar]
  • Dawkins H.C., 1958. The management of natural tropical highforests with special reference to Uganda. Imperial Forestry Institute, University of Oxford, 155 p. [Google Scholar]
  • Favrichon V., 1994. Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d’un modèle de dynamique de peuplement en forêt guyanaise. Terre Vie-Rev. Ecol. A 49: 379–403 [Google Scholar]
  • Favrichon V., 1995. Modèle matriciel déterministe en temps discret: application à l’étude de la dynamique d’un peuplement forestier tropical humide (Guyane française). Thèse, Université Claude Bernard Lyon 1, France, 252 p. [Google Scholar]
  • Flores O., Gourlet-Fleury S. and Picard N., 2006. Local disturbance, forest structure and dispersal effects on sapling distribution of light-demanding and shade-tolerant species in a French Guianian forest. Acta Oecol. 29: 141–154 [CrossRef] [Google Scholar]
  • Gallenmüller F., Rowe N.P. and Speck T., 2004. Development and growth form of the neotropical liana Croton nuntians: the effect of light and mode of attachment on the biomechanics of the stem. J. Plant Growth Regul. 23: 83–97 [CrossRef] [Google Scholar]
  • Gourlet-Fleury S., 2002. Régénération de l’Angélique (Dicorynia guianensis Amshoff., Caesalpiniaceae) en Guyane française. Rapport final projet Ecofor : Étude qualitative et quantitative du déterminisme de la reproduction, de l’installation et du développement des nouveaux individus dans le peuplement. Cirad, 60 p. [Google Scholar]
  • Gourlet-Fleury S., Guehl J.-M. and Laroussinie O., 2004. Ecology and management of a neotropical rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana, Paris, France, 350 p. [Google Scholar]
  • Holbrook M.N. and Putz F.E., 1989. Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (sweet gum). Am. J. Bot. 76: 1740–1749 [CrossRef] [Google Scholar]
  • Jaffe M.J., Leopold A.C. and Staples R.C., 2002. Thigmo responses in plants and fungi. Am. J. Bot. 89: 375–382 [CrossRef] [PubMed] [Google Scholar]
  • Jaouen G., 2007. Étude des stratégies biomécaniques de croissance des jeunes arbres en peuplement hétérogène tropical humide. Biologie végétale et forestière, Thèse, Université Henri Poincaré, Nancy I, France, 217 p. [Google Scholar]
  • Jaouen G., Alméras T., Coutand C. and Fournier M., 2007. How to determine sapling buckling risk with only a few measurements. Am. J. Bot. 94: 1583–1593 [CrossRef] [PubMed] [Google Scholar]
  • King D.A., 1990. Allometry of saplings and understory trees of a panamanian forest. Funct. Ecol. 4: 27–32 [CrossRef] [Google Scholar]
  • Larson P.R., 1963. Stem form development of forest trees. For. Sci. Monogr. 5: 1–42 [Google Scholar]
  • Mattheck C., 1990. Engineering Components grow like trees. Materialwiss, Werkst. 21: 143–168. [CrossRef] [Google Scholar]
  • Messier C. and Nikinmaa E., 2000. Effects of light availability and sapling size on the growth, biomass allocation, and crown morphology of understory sugar maple, yellow birch, and beech. Ecoscience 7: 345–356 [Google Scholar]
  • Moulia B., Coutand C. and Lenne C., 2006. Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am. J. Bot. 93: 1477–1489 [CrossRef] [PubMed] [Google Scholar]
  • Oldeman R.A.A. and Van Dijk J., 1991. Diagnosis of the temperament of tropical rain forest trees. In: Gomez-Pompa A., Whitmore T.C. and Hadley M. (Eds.), Rain forest regeneration and management, UNESCO and The Parthenon publishing group, Paris, France, pp. 21–65. [Google Scholar]
  • Pappas T. and Mitchell C.A., 1982. Mechanical stress regulation of growth and photosynthetic productivity of Glycine max/L./Merr. cv Wells II under different environmental regimes (soybean plant growth retardation by shaking and rubbing). Physiologist 25: S135–S136 [Google Scholar]
  • Poorter L., 2001. Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funct. Ecol. 15: 113–123 [Google Scholar]
  • Rijkers T., Pons T.L. and Bongers F., 2000. The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Funct. Ecol. 14: 77–86 [CrossRef] [Google Scholar]
  • Rowe N.P. and Speck T., 1998. Biomechanics of plant growth forms: the trouble with fossil plants. Rev. Palaeobot. Palynol. 102: 43–62 [CrossRef] [Google Scholar]
  • Rowe N.P. and Speck T., 2005. Plant growth forms: an ecological and evolutionary perspective. New Phytol. 166: 61–72 [CrossRef] [PubMed] [Google Scholar]
  • Rowe N.P., Isnard S., Gallenmüller F. and Speck T., 2006. Diversity of mechanical architectures in climbing plants: an ecological perspective. In: Herrel A., Speck T. and Rowe N.P. (Eds.), Ecology andbiomechanics. A mechanical approach to the ecology of animals and plants, Taylor and Francis, CRC Press. [Google Scholar]
  • Schnitzer S.A. and Carson W.P., 2001. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82: 913–919 [CrossRef] [Google Scholar]
  • Schnitzer S.A. and Bongers F., 2002. The ecology of lianas and their role in forests. Trends Ecol. Evol. 17: 223–230 [Google Scholar]
  • Sterck F.J. and Bongers F., 1998. Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am. J. Bot. 85: 266–272 [CrossRef] [PubMed] [Google Scholar]
  • Van der Meer P.J., Sterck F.J. and Bongers F., 1998. Tree seedling performance in canopy gaps in a tropical rain forest at Nouragues, French Guiana. J. Trop. Ecol. 14: 119–137 [CrossRef] [Google Scholar]
  • van Gelder H.A., Poorter L. and Sterck F.J., 2006. Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol. 171: 367–378 [CrossRef] [PubMed] [Google Scholar]