Open Access
Issue
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 200
Number of page(s) 6
DOI https://doi.org/10.1051/forest/2009107
Published online 01 February 2010
  • Alberton O. and Kuyper T.W., 2009. Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: Implications for ecosystem responses to global change. Glob. Change Biol. 15: 166–175 [CrossRef] [Google Scholar]
  • Arnolds E., 1991. Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ. 35: 209–244 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Avis P.G., Branco S., Tang Y. and Mueller G.M., 2009. Pooled samples bias fungal community descriptions. Mol. Ecol. Resour. Doi: 10.1111/j.1755-0998.2009.02743.x. [Google Scholar]
  • Baxter J.W. and Dighton J., 2005. Diversity-functioning relationships in ectomycorrhizal fungal communities. In: Dighton J., White J.F. and Oudemans P. (Eds.) The fungal community: Its organization and role in the ecosystem, Marcel Dekker, New York, pp. 383–398. [Google Scholar]
  • Bidartondo M.I., Ek H., Wallander H. and Söderström B., 2001. Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? New Phytol. 151: 543–550 [CrossRef] [Google Scholar]
  • Børja I. and Nilsen P., 2009. Long term effect of liming and fertilization on ectomycorrhizal colonization and tree growth in old scots pine (Pinus sylvestris L.) stands. Plant Soil 314: 109–119 [CrossRef] [Google Scholar]
  • Brock P.M., Döring H. and Bidartondo M.I., 2009. How to know unknown fungi: the role of a herbarium. New Phytol. 181: 719–724 [CrossRef] [PubMed] [Google Scholar]
  • Buee M., Reich M., Murat C., Morin E., Nilsson R.H., Uroz S. and Martin F., 2009. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184: 438–448 [CrossRef] [PubMed] [Google Scholar]
  • Chapela I.H., Osher L.J., Horton T.R. and Henn M.R., 2001. Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol. Biochem. 33: 1733–1740 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Courtecuisse R., Moreau P.-A. and Daillant O., 2008. Suivi de la flore fongique : une énorme diversité difficile à mesurer – Partenariat avec les sociétés mycologiques de France. In: 15 Ans de suivi des écosystèmes forestiers, Hors Série no. 4, Rendez-Vous Techniques, Office National des Forêts, pp. 99–102. [Google Scholar]
  • Ellis C.J., Coppins B.J., Dawson T.P. and Seaward M.R.D., 2007. Response of British lichens to climate change scenarios: Trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol. Conserv. 140: 217–235 [CrossRef] [Google Scholar]
  • Fransson P.M.A., Anderson I.C. and Alexander I.J., 2007. Does carbon partitioning in ectomycorrhizal pine seedlings under elevated CO2 vary with fungal species ? Plant Soil 291: 323–333 [CrossRef] [Google Scholar]
  • Gardes M. and Bruns T.D., 1996. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: Above- and below-ground views. Can. J. Bot. 74: 1572–1583 [CrossRef] [Google Scholar]
  • Gehring C.A., Theimer T.C., Whitham T.G. and Keim P., 1998. Ectomycorrhizal fungal community structure of pinyon pines growing in environmental extremes. Ecology 79: 1562–1572 [CrossRef] [Google Scholar]
  • Gorissen A. and Kuyper T.W., 2000. Fungal species-specific responses of ectomycorrhizal scots pine (Pinus sylvestris) to elevated [CO2]. New Phytol. 146: 163–168 [CrossRef] [Google Scholar]
  • Hedh J., Samson P., Erland S. and Tunlid A., 2008. Multiple gene genealogies and species recognition in the ectomycorrhizal fungus Paxillus involutus. Mycol. Res. 112: 965–975 [CrossRef] [PubMed] [Google Scholar]
  • Hobbie J.E. and Hobbie E.A., 2006. N15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology 87: 816–822 [CrossRef] [PubMed] [Google Scholar]
  • Högberg P., Nordgren A., Buchmann N., Taylor A.F.S., Ekblad A., Högberg M.N., Nyberg G., Ottosson-Löfvenius M. and Read D.J., 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789–792 [CrossRef] [PubMed] [Google Scholar]
  • Horton T.R. and Bruns T.D., 2001. The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Mol. Ecol. 10: 1855–1871 [CrossRef] [PubMed] [Google Scholar]
  • Johnson N.C., Graham J.H. and Smith F.A., 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135: 575–586 [CrossRef] [Google Scholar]
  • Kauserud H., Sige L.C., Vik J.O., Økland R.H., Høiland K. and Stenseth N.C., 2008. Mushroom fruiting and climate change. Proc. Natl. Acad. Sci. USA 105: 3811–3814 [CrossRef] [Google Scholar]
  • Koide R.T., Xu B. and Sharda J., 2005. Contrasting below-ground views of an ectomycorrhizal fungal community. New Phytol. 166: 251–262 [CrossRef] [PubMed] [Google Scholar]
  • Kretzer A., Dunham S., Molina R. and Spatafora J.W., 2004. Microsatellite markers reveal the below ground distribution of genets in two species of rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol. 161: 313–320 [CrossRef] [Google Scholar]
  • Lilleskov E.A., Fahey T.J., Horton T.R. and Lovett G.M., 2002. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83: 104–115 [CrossRef] [Google Scholar]
  • Lilleskov E.A., Hobbie E.A. and Fahey T.J., 2002. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol. 154: 219–231 [CrossRef] [Google Scholar]
  • Lilleskov E.A. and Parrent J.L., 2007. Can we develop general predictive models of mycorrhizal fungal community-environment relationships ? New Phytol. 174: 250–256 [CrossRef] [PubMed] [Google Scholar]
  • Molina R., Massicotte H. and Trappe J.M., 1992. Specificity phenomena in mycorrhizal symbioses: Community-ecological consequences and practical implications. In: Allen M.F. (Ed.), Mycorrhizal functioning: an integrative plant-fungal process, New York, Chapman and Hall, pp. 357–423. [Google Scholar]
  • Nilsson R.H., Kristiansson E., Ryberg M., Hallenberg N. and Larsson K.H., 2008. Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4: 193–201 [PubMed] [Google Scholar]
  • Peay K.G., Kennedy P.G. and Bruns T.D., 2008. Fungal community ecology: A hybrid beast with a molecular master. Bioscience 58: 799–810 [CrossRef] [Google Scholar]
  • Rinaldi A.C., Comandini O. and Kuyper T.W., 2008. Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers. 33: 1–45 [Google Scholar]
  • Smith S.E. and Read D.J., 2008. Mycorrhizal symbiosis. Academic Press, London. [Google Scholar]
  • Taylor A.F.S., 2002. Fungal diversity in ectomycorrhizal communities: Sampling effort and species detection. Plant Soil 244: 19–28 [CrossRef] [Google Scholar]
  • Wang B. and Qiu Y.L., 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299–363 [CrossRef] [PubMed] [Google Scholar]