Free Access
Issue
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 201
Number of page(s) 8
DOI https://doi.org/10.1051/forest/2009094
Published online 01 February 2010
  • Aulitzky H., 1961. Die Bodentemperaturverhältnisse in der Kampfzone oberhalb der Waldgrenze und im subalpinen Zirben-Lärchenwald. Mitt. Forstl. Bundesvers. Mariabrunn 59: 153–208 [Google Scholar]
  • Battagila M., Beadle C. and Loughead S., 1996. Photosynthetic temperature response of Eucalyptus globulus and Eucalyptus nitens. Tree Physiol. 16: 81–99 [PubMed] [Google Scholar]
  • Benecke U. and Havranek W.M., 1980. Gas exchange of trees at altitudes up to timberline, Craigieburn Range, New Zealand. In: Benecke U., Davies M.D. (Eds.), Mountain environments and subalpine tree growth. Technical report 70, New Zealand Forest Service, pp. 195–212. [Google Scholar]
  • Benecke U., Schulze E.-D., Matyssek R. and Havranek W.M., 1981. Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50: 54–61 [CrossRef] [PubMed] [Google Scholar]
  • Beniston M., Diaz H.F. and Bradley R.S., 1997. Climate change at high elevation sites: an overview. Clim. Change 36: 233–251 [Google Scholar]
  • Cartellieri E., 1935. Jahresgang von osmotischem Wert, Transpiration und Assimilation einiger Ericaceen der alpinen Zwergstrauchheide und von Pinus cembra. Jahrb. Wiss. Bot. 82: 460–506 [Google Scholar]
  • Cavieres L.A., Rada F., Azocar A., Garcia-Nunez C. and Cabera H.M., 2000. Gas exchange and low temperature resistance in two tropical high mountain tree species in the Venezuelan Andes. Acta Oecol. 21: 203–211 [CrossRef] [Google Scholar]
  • Cunningham S.C. and Read J., 2002. Comparison of temperature and tropical rainforest tree species: photosynthetic response to temperature. Oecologia 133: 112–119 [CrossRef] [PubMed] [Google Scholar]
  • Day T.A., DeLucia E.H. and Smith W.K., 1989. Influence of cold soil and snow cover on photosynthesis and leaf conductance in two Rocky Mountain conifers. Oecologia 80: 546–552 [CrossRef] [PubMed] [Google Scholar]
  • DeLucia E.H., 1986. Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmanii Parry ex Engelm.) seedlings. Tree Physiol. 2: 143–154 [PubMed] [Google Scholar]
  • Diaz H.F. and Bradley R.S., 1997. Temperature variations during the last century at high elevation sites. Clim. Change 36: 253–279 [CrossRef] [Google Scholar]
  • Ellenberg H., 1996. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5. Auflage, Ulmer, Stuttgart, 1095 p. [Google Scholar]
  • FAO, ISRIC, and ISSS, 1998. World reference for soil resources. FAO, Rome, 109 p. [Google Scholar]
  • Grace J., Berninger F. and Nagy L., 2002. Impact of climate change on the treeline. Ann. Bot. 90: 537–544 [Google Scholar]
  • Gruber A., Zimmermann J., Wieser G. and Oberhuber W., 2009a. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine timberline ecotone. Ann. For. Sci. 66: 503. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Gruber A., Wieser G. and Oberhuber W., 2009b. Effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine timberline: a new approach based on root zone roofing. Eur. J. For. Res. Doi: 10.1007/s10342-009-0305-3. [Google Scholar]
  • Häsler R., 1994. Ecophysiological investigations on cembran pine at timberline in the Alps, an overview. In: Schmidt W.C. and Holtmeier F.-K. (Eds.), Proceedings of an International workshop on Subalpine stone pines and their environment: the status of knowledge, Sept. 5–11, St. Moritz, Switzerland. Tech. Rep. INT-GTR-309, US Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, pp. 61–66. [Google Scholar]
  • Havranek W.M., 1972. Über die Bedeutung der Bodentemperatur für die Photosynthese und die Transpiration junger Forstpflanzen und für die Stoffproduktion an der Waldgrenze. Angew. Bot. 46: 101–116 [Google Scholar]
  • Holtmeier F.-K. and Broll G., 2007. Treeline advance – driving processes and adverse factors. Landscape Online 1: 1–33 [CrossRef] [Google Scholar]
  • Hurtin K.R. and Marshall J.D., 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123: 32–40 [CrossRef] [PubMed] [Google Scholar]
  • IPCC, 2007. Climate change 2007, Cambridge University Press, Cambridge. [Google Scholar]
  • Jones P.D., Wigley T.M.L., Folland C.K., Parker D.E., Angelli J.K., Jebedeff S. and Hansen J.E., 1988. Evidence of global warming in the last decade. Nature 332: 791. [CrossRef] [Google Scholar]
  • Körner Ch., 2003. Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd ed., Springer, Berlin, 344 p. [Google Scholar]
  • Körner C., 2007, Climatic treelines: conventions, global patterns, causes. Erdkunde 61: 316–324. [CrossRef] [Google Scholar]
  • Körner C. and Paulsen L., 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31: 713–732 [CrossRef] [Google Scholar]
  • Larcher W., 1967. Die Berge einzigartiges Versuchsfeld der Natur. Jahrb. Ver. Schutze Alpenpflanzen Tiere 32: 1–7 [Google Scholar]
  • Larcher W., 2001. Ökophysiologie der Pflanzen: Leben, Leistung und Stressbewältigung der Pflanzen in ihrer Umwelt, Ulmer, Stuttgart, 408 p. [Google Scholar]
  • Ledig F.T. and Korbobo D.R., 1983. Adaptation of sugar maple populations along altitudinal gradients: photosynthesis, respiration, and specific leaf weight. Am. J. Bot. 70: 256–265 [CrossRef] [Google Scholar]
  • Neuwinger I., 1970. Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitt. Ostalpin-Dinarischen Ges. 11: 135–150 [Google Scholar]
  • Neuwinger I., 1980. Erwärmung, Wasserrückhalt und Erosions-bereitschaft subalpiner Böden. Mitt. Forstl. Bundesvers. Wien 129: 113–144 [Google Scholar]
  • Oberhuber W., 2007. Limitation by growth processes. In: Wieser G. and Tausz M. (Eds.), Trees at their upper limit. Treelife limitation, at the alpine timberline, Plant Ecophysiology, Vol. 5, Springer, Dorthrecht, The Netherlands, pp. 131–143. [Google Scholar]
  • Pisek A., Larcher W., Moser W. and Pack I., 1969. Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temberaturbereich der Netto-Photosynthese. Flora Abt. B 158: 608–630 [Google Scholar]
  • Pisek A., Larcher W., Vegis A. and Napp-Zinn K., 1973. The normal temperature range. In: Precht H., Christophersen J., Hensel H. and Larcher W. (Eds.), Temperature and life, Springer, Berlin, Heidelberg, New York, pp. 102–194. [Google Scholar]
  • Pisek A. and Winkler E., 1958. Assimilationsvermögen und Respiration der Fichte (Picea excelsa LINK) in verschiedenen Höhenlagen und der Zirbe (Picea abies L.) an der alpinen Waldgrenze. Planta 51: 518–543 [CrossRef] [Google Scholar]
  • Rada F., Azocar A., Gonzales J. and Briceno B., 1998. Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecol. 19: 73–79 [CrossRef] [Google Scholar]
  • Richardson A.D., Berlyn G.P. and Gregorie T.G., 2001. Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamifera (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire, USA. Am. J. Bot. 88: 667–676 [CrossRef] [PubMed] [Google Scholar]
  • Sall T. and Pettersen P., 1994. A model of photosynthetic acclimation as a special case of reaction norms. Theor. Biol. 166: 1–8 [CrossRef] [Google Scholar]
  • Slatyer R.O., 1977. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Sreng. I. Seasonal changes under field conditions in the Snowy Mountains area of South-east australy. Aust. J. Bot. 25: 1–20 [Google Scholar]
  • Slatyer R.O., 1978. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. Ex Sreng. VII. Relationships between gradients of field temperature and photosynthetic temperature optima in the Snowy Mountains area. Aust. J. Bot. 26: 111–121 [CrossRef] [Google Scholar]
  • Sternberg P., De Lucia E.H., Schoettle A.W. and Smolander H., 1995. Photosynthetic light capture and processing from cell to canopy. In: Smith W.K. and Hinckley T.M. (Eds.), Ecophysiology of coniferous forests, Academic Press, San Diego, pp. 3–38. [Google Scholar]
  • Tranquillini W., 1976. Water relations at timberline. In: Lange O.L., Kappen L. and Schulze E.-D. (Eds.), Water relations and plant life. Problems and modern approaches, Ecological Studies, Vol. 19. Springer, Berlin, Heidelberg, New York, pp. 473–491. [Google Scholar]
  • Tranquillini W., 1979. Physiological ecology of the alpine timberline, Ecol. Stud. 31, Springer Verlag, Berlin, 137 p. [Google Scholar]
  • Von Caemmerer S. and Farquhar G.D., 1981. Some relationships between the biochemistry of photosynthesis and gas exchange of leaves. Planta 153: 376–387 [CrossRef] [PubMed] [Google Scholar]
  • Walther G.-R., 2003. Plants in a warmer world. Perspect. Plant. Ecol. Evol. Syst. 6: 169–185 [CrossRef] [Google Scholar]
  • Walther G.-R., Beißner S. and Pott R., 2005. Climate change and high mountain vegetation shifts. In: Broll G. and Keplin B. (Eds.), Mountain ecosystems, Studies in Treeline Ecology, Springer, Berlin, Heidelberg, pp. 77–95. [Google Scholar]
  • Wang Q., Ilo A., Tenhunen J. and Kalkubari Y., 2008. Annual and seasonal variations in photosynthetic capacity of Fagus crenata alongan elevation gradient in the Naeba Mountains, Japan. Tree Physiol. 28: 277–285 [PubMed] [Google Scholar]
  • Wieser G., 1997. Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol. 17: 473–477 [PubMed] [Google Scholar]
  • Wieser G., 2002. Exchange of trace gases at the tree – atmosphere interface: ozone. In: Gasche R., Papen H. and Rennenberg H. (Eds.), Trace gas exchange in forest ecosystems, Tree Physiology, Vol. 3, Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 211–226. [Google Scholar]
  • Wieser G., 2004. Environmental control of carbon dioxide gas exchange in needles of a mature Pinus cembra tree at the alpine timberline during the growing season. Phyton 44: 145–153 [Google Scholar]
  • Wieser G., Matyssek R., Luzian R., Zwerger P., Pindur P., Oberhuber W. and Gruber A. 2009. Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann. For. Sci. 66: 402. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Wieser G. and Stöhr D., 2005. Net ecosystem carbon dioxide exchange dynamics in a Pinus cembra forest at the upper timberline in the central Austrian Alps. Phyton 45: 233–242 [Google Scholar]
  • Wieser G. and Tausz M., 2007. Trees at their upper limit: Treelife limitation at the alpine timberline, Plant Ecophysiology, Vol. 5, Springer, 232 p. [Google Scholar]