Free Access
Issue
Ann. For. Sci.
Volume 67, Number 3, May 2010
Article Number 305
Number of page(s) 11
Section Original articles
DOI https://doi.org/10.1051/forest/2009112
Published online 18 February 2010
  • Ayer M., Brunk H.D., Ewing G.M., Reid W.T. and Silverman E., 1955. An empirical distribution function for sampling with incomplete information. Ann. Math. Stat. 26: 641–647 [CrossRef] [Google Scholar]
  • Bigler C. and Bugmann H., 2003. Growth-dependent tree mortality models based on tree-rings. Can. J. For. Res. 33: 210–221 [CrossRef] [Google Scholar]
  • Bugmann H., 1994. On the ecology of mountainous forests in a changing climate: a simulation study. Ph.D. thesis, Swiss federal institute of technology, Zürich. [Google Scholar]
  • Canham C.D., Papaik M.J. and Latty E.F., 2001. Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can. J. For. Res. 31: 1–10 [CrossRef] [Google Scholar]
  • Clark J.S., 1996. Testing disturbance theory with long-term data: Alternative life-history solutions to the distribution of events. Am. Nat. 148: 976–996 [CrossRef] [Google Scholar]
  • Coomes D.A., Duncan R.P., Allen R.B. and Truscott J., 2003. Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol. Lett. 6: 980–989 [CrossRef] [Google Scholar]
  • Courbaud B., de Coligny F. and Cordonnier T., 2003. Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope. Agric. For. Meteorol. 116: 1–18 [CrossRef] [Google Scholar]
  • Das A., Battles J., van Mantgem P.J. and Stephenson N.L., 2008. Spatial elements of mortality risk in old-growth forests. Ecology 89: 1744–1756 [CrossRef] [PubMed] [Google Scholar]
  • Dobbertin M., 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124: 319–333 [CrossRef] [Google Scholar]
  • Dovčiak M., Hrivnák R., Ujházy K. and Gömöry D., 2008. Seed rain and environmental controls on invasion of Picea abies into grassland. Plant Ecol. 194: 135–148 [Google Scholar]
  • Eid T. and Tuhus E., 2001. Models for individual tree mortality in Norway. For. Ecol. Manag. 154: 69–84 [CrossRef] [Google Scholar]
  • Fortin M., Bedard S., DeBlois J. and Meunier S., 2008. Predicting individual tree mortality in northern hardwood stands under uneven-aged management in southern Quebec, canada. Ann. For. Sci. 65: 205. [Google Scholar]
  • Franklin J.F., Shugart H.H. and Harmon M.E., 1987. Tree death as an ecological process. BioScience 550–556. [Google Scholar]
  • Fridman J. and Valinger E., 1998. Modelling probability of snow and wind damage using tree, stand, and site characteristics from Pinus sylvestris sample plots. Scan. J. For. Res. 13: 348–356 [CrossRef] [Google Scholar]
  • Gower S.T., McMurtrie R.E. and Murty D., 1996. Aboveground net primary production decline with stand age: Potential causes. Trends Ecol. Evol. 11: 378–382 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Grassi G. and Bagnaresi U., 2001. Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient. Tree Physiol. 21: 959–967 [PubMed] [Google Scholar]
  • Hansen E.M., Bentz B.J., Munson A.S., Vandygriff J.C. and Turner D.L., 2006. Evaluation of funnel traps for estimating tree mortality and associated population phase of spruce beetle in Utah. Can. J. For. Res. 36: 2574–2584 [CrossRef] [Google Scholar]
  • Harcombe P.A., 1987. Tree life table. Bioscience 37: 557–568 [CrossRef] [Google Scholar]
  • Hawkes C., 2000. Woody plant mortality algorithms: description, problems and progress. Ecol. Model. 126: 225–248 [CrossRef] [Google Scholar]
  • Hubbard R.M., Bond B.J. and Ryan M.G., 1999. Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiol. 19: 165–172 [PubMed] [Google Scholar]
  • Ihaka R. and Gentleman R., 1996. R: A Language for Data Analysis and Graphics. J. Comp. Graph. Stat. 5: 299–314 [CrossRef] [Google Scholar]
  • Kobe R.K. and Coates K.D., 1997. Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species of northwestern British Columbia. Can. J. For. Res. 27: 227–236 [CrossRef] [Google Scholar]
  • Kobe R.K., Pacala S.W. and Silander J.A., 1995. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 5: 517–532 [CrossRef] [Google Scholar]
  • Korzukhin M.D. and Ter-Mikaelian M.T., 1995. An individual tree-based model of competition for light. Ecol. Model. 79: 221–229 [CrossRef] [Google Scholar]
  • Kunstler G., Curt T., Bouchaud M. and Lepart J., 2005. Growth, mortality, and morphological response of European beech and downy oak along a light gradient in sub-Mediterranean forest. Can. J. For. Res. 35: 1657–1668 [CrossRef] [Google Scholar]
  • Lavine M., 1991. Problems in Extrapolation Illustrated with Space-Shuttle O-Ring Data. J. Am. Stat. Assoc. 86: 919–921 [CrossRef] [Google Scholar]
  • Lee Y.J., 1971. Predicting mortality for even-aged stands of lodgepole pine. For. Chron. 47: 29–32 [Google Scholar]
  • Lexer M.J. and Hönninger K., 2001. A modified 3D-patch model for spatially explicit simulation of vegetation composition in heteregeneous landscape. For. Ecol. Manage. 144: 43–65 [CrossRef] [Google Scholar]
  • Lin J., Harcombe P.A. and Fulton M.R., 2001. Characterizing shade tolerance by the relationship between mortality and growth in tree saplings in a southeastern Texas forest. Can. J. For. Res. 31: 345–349 [CrossRef] [Google Scholar]
  • Lundstrom T., Jonas T., Stockli V. and Ammann W., 2007. Anchorage of mature conifers: Resistive turning moment, root-soil plate geometry and root growth orientation. Tree Physiol. 27: 1217–1227 [PubMed] [Google Scholar]
  • MacFarlane D.W., Green E.J., Brunner A. and Burkhart H.E., 2002. Predicting survival and growth rates for individual loblolly pine trees from light capture estimates. Can. J. For. Res. 32: 1970–1983 [CrossRef] [Google Scholar]
  • Monserud R.A., 1976. Simulation of forest tree mortality. For. Sci. 22: 438–444 [Google Scholar]
  • Monserud R.A. and Sterba H., 1999. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manage. 113: 109–123 [CrossRef] [Google Scholar]
  • Moore J.A., Hamilton D.A., Xiao Y. and Byrne J., 2004. Bedrock type significantly affects individual tree mortality for various conifers in the inland Northwest, USA. Can. J. For. Res. 34: 31–42 [CrossRef] [Google Scholar]
  • Muller-Landau H.C., Condit R.S., Chave J., Thomas S.C., Bohlman S.A., Bunyavejchewin S., Davies S., Foster R., Gunatilleke S., Gunatilleke N., Harms K.E., Hart T., Hubbell S.P., Itoh A., Kassim A.R., LaFrankie J.V., Lee H.S., Losos E., Makana J.R., Ohkubo T., Sukumar R., Sun I.F., Supardi N.M.N., Tan S., Thompson J., Valencia R., Munoz G.V., Wills C., Yamakura T., Chuyong G., Dattaraja H.S., Esufali S., Hall P., Hernandez C., Kenfack D., Kiratiprayoon S., Suresh H.S., Thomas D., Vallejo M.I. and Ashton P., 2006. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9: 575–588 [CrossRef] [PubMed] [Google Scholar]
  • Nishimura T.B., 2006. Successional replacement mediated by frequency and severity of wind and snow disturbances in a Picea-Abies forest. J. Veg. Sci. 17: 57–64 [CrossRef] [Google Scholar]
  • Pacala S.W., Canham C., Saponara J., Silander J.A., Kobe R.K. and Ribbens E., 1996. Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol. Monogr. 66: 1–43 [CrossRef] [Google Scholar]
  • Pacala S.W. and Rees M., 1998. Models suggesting field experiments to test two hypotheses explaining successional diversity. Am. Nat. 152: 729–737 [CrossRef] [PubMed] [Google Scholar]
  • Papaik M.J. and Canham C.D., 2006. Species resistance and community response to wind disturbance regimes in northern temperate forests. J. Ecol. 94: 1011–1026 [CrossRef] [Google Scholar]
  • Peet R.K. and Christensen N.L., 1987. Competition and tree death. BioScience 37: 586–595 [CrossRef] [Google Scholar]
  • Peltola H., Kellomaki S., Vaisanen H. and Ikonen V.P., 1999. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can. J. For. Res. 29: 647–661 [CrossRef] [Google Scholar]
  • Rees M., Condit R., Crawley M., Pacala S. and Tilman D., 2001. Long-term studies of vegetation dynamics. Science 293: 650–655 [CrossRef] [PubMed] [Google Scholar]
  • Sagnard F., Pichot C., Dreyfus P., Jordano P. and Fady B., 2007. Modelling seed dispersal to predict seedling recruitment: recolonization dynamics in a plantation forest. Ecol. Model. 203: 464–474 [CrossRef] [Google Scholar]
  • Schütz J.-P., 1969. Etude des phénomènes de la croissance en hauteur et en diamètre du sapin (Abies alba Mill.) et de l’épicéa (Picea abies Karst.) dans deux peuplements jardinés et une forêt vierge. Ph.D. thesis, École Polytechnique Fédérale Zurich, Zurich. [Google Scholar]
  • Stokes A., Salin F., Kokutse A.D., Berthier S., Jeannin H., Mochan S., Dorren L., Kokutse N., Abd Ghani M. and Fourcaud T., 2005. Mechanical resistance of different tree species to rockfall in the French Alps. Plant Soil 278: 107–117 [CrossRef] [Google Scholar]
  • Tilman D., 1994. Competition and biodiversity in spatially structured habitats. Ecology 75: 2–16 [CrossRef] [Google Scholar]
  • Ulmer U., 2006. Schweizerisches Landesforstinventar LFI. Datenbank-auszug der Erhebungen 1983–85 und 1993–95 vom 30. Mai 2006. Technical report, WSL, Eidg. Forschungsanstalt WSL, Birmensdorf. [Google Scholar]
  • Uriarte M., Canham C.D., Thompson J. and Zimmerman J.K., 2004. A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecol. Monogr. 74: 591–614 [CrossRef] [Google Scholar]
  • Valinger E. and Fridman J., 1997. Modelling probability of snow and wind damage in Scots pine stands using tree characteristics. For. Ecol. Manage. 97: 215–222 [CrossRef] [Google Scholar]
  • Vieilledent G., Courbaud B., Kunstler G., Dhote J.F. and Clark J.S., 2009. Biases in the estimation of size-dependent mortality models: advantages of a semiparametric approach. Can. J. For. Res. 39: 1430–1443 [CrossRef] [Google Scholar]
  • Wasser B. and Frehner M., 1996. Soins minimaux pour les forêts à fonction protectrice. Office Central Fédéral des Imprimés et du Matériel, Berne. [Google Scholar]
  • Worrall J.J., Lee T.D. and Harrington T.C., 2005. Forest dynamics and agents that initiate and expand canopy gaps in Picea-Abies forests of Crawford Notch, New Hampshire, USA. J. Ecol. 93: 178–190 [CrossRef] [Google Scholar]
  • Wunder J., Reineking B., Matter J.F., Bigler C. and Bugmann H., 2007. Predicting tree death for Fagus sylvatica and Abies alba using permanent plot data. J. Veg. Sci. 18: 525–534 [CrossRef] [Google Scholar]
  • Wyckoff P.H. and Clark J.S., 2000. Predicting tree mortality from diameter growth: a comparison of maximum likelihood and Bayesian approaches. Can. J. For. Res. 30: 156–167 [CrossRef] [Google Scholar]
  • Wyckoff P.H. and Clark J.S., 2002. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J. Ecol. 90: 604–615 [CrossRef] [Google Scholar]
  • Yao X.H., Titus S.J. and MacDonald S.E., 2001. A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests. Can. J. For. Res. 31: 283–291 [CrossRef] [Google Scholar]
  • Zolubas P., 2003. Spruce Bark Beetle (Ips typographus L.) Risk based on individual tree parameters. In: IUFRO (Ed.), Forest insect population dynamics and host influences, Kanazawa, pp. 96–97. [Google Scholar]