Free Access
Ann. For. Sci.
Volume 67, Number 3, May 2010
Article Number 303
Number of page(s) 10
Section Original articles
Published online 18 February 2010
  • Bonal D., Sabatier D., Montpied P., Tremeaux D. and Guehl J.M., 2000. Interspecific variability of δ13C among canopy trees in rainforests of French Guiana: Functional groups and canopy integration. Oecologia 124: 454–468 [CrossRef] [PubMed] [Google Scholar]
  • Botta-Dukát Z., 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16: 533–540 [Google Scholar]
  • Cardinale B.J., Wrigh J.P., Cadotte M.W., Carroll I.T., Hector A., Srivastava D.S. et al., 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci., USA, 104: 18123–18128. [Google Scholar]
  • Chapin F.S., Zavaleta E.S., Eviner V.T, Naylor R.L., Vitousek P.M., Reynolds H.L., Hooper D.U., Lavorel S., Sala O.E., Hobbie S.E., Mack M.C. and Diaz S., 2000. Consequences of changing biodiversity. Nature 405: 234–242 [CrossRef] [PubMed] [Google Scholar]
  • Chave J., Muller-Landau H.C., Baker T.R., Easdale T.A., Ter Steege, H. and Webb C.O., 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 16: 2356–2367 [CrossRef] [PubMed] [Google Scholar]
  • Chessel D., Dufour, A.B. and Thioulouse, J., 2004. The ade4 package-I- One-table methods. R News. 4: 5–10 [Google Scholar]
  • Cochran W.G. and Cox G.M., 1992. Experimental Designs, John Wiley and Sons, New York, 428 p. [Google Scholar]
  • Cornelissen J.H.C., Lavorel S., Garnier E., Diaz S., Buchmann N., Gurvich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G. and Poorter H., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51: 335–380 [CrossRef] [Google Scholar]
  • Craine J.M., Tilman D., Wedin D., Reich P., Tjolker M. and Knops J., 2002. Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct. Ecol. 16: 563–574 [CrossRef] [Google Scholar]
  • Davies T.J., Barraclough T.G., Chase M.W., Soltis P.S., Soltis D.E. and Savolainen V., 2004. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl. Acad. Sci. USA 101: 1904–1909 [CrossRef] [Google Scholar]
  • Diaz S. and Cabido M., 2001. Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16: 646–655 [CrossRef] [Google Scholar]
  • Ewel J.J., 2006. Species and rotation frequency influence soil nitrogen in simplified tropical plant communities. Ecol. Appl. 16: 490–502 [CrossRef] [PubMed] [Google Scholar]
  • Faith D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61: 1–10 [CrossRef] [Google Scholar]
  • Fargione J., Tilman D., Dybzinski R., Lambers J.H.R., Clark C., 2007. From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. Roy. Soc. B. 274: 871–876 [CrossRef] [Google Scholar]
  • Forest F., Grenyer R., 2006. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757–760 [CrossRef] [Google Scholar]
  • Gamfeldt L., Hillebrand H. and Jonsson P.R., 2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89: 1223–1231 [CrossRef] [PubMed] [Google Scholar]
  • Gotelli N.J. and Graves G.R., 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, 368 p. [Google Scholar]
  • Grime J.P., Thompson K., Hunt R., Hodgson J.G., Cornelissen J.H.C., 1997. Integrated screening validates primary axes of specialization in plants. Oikos 79: 259–281 [CrossRef] [Google Scholar]
  • Hector A. and Bagchi R., 2007. Biodiversity and ecosystem multifunctionality. Nature 448: 188–190 [Google Scholar]
  • Hillebrand H., Bennett D.M. and Cadotte M.W., 2008. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89: 1510–1520 [CrossRef] [PubMed] [Google Scholar]
  • Hooper D.U. and Dukes J.S., 2004. Overyielding among plant functional groups in a long-term experiment. Ecol. Lett. 7: 95–105 [CrossRef] [Google Scholar]
  • Hooper D.U., Chapin F.S., Ewel J.J., Hector A., Inchausti P., Lavorel S., Lawton J.H., Lodge D.M., Loreau M., Naeem S., Schmid B., Setala H., Symstad A.J., Vandermeer J. and Wardle D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecol. Monogr. 75: 3–36 [Google Scholar]
  • Huston M.A., Aarssen L.W., Austin M.P., Cade B.S., Fridley J.D., Garnier E.,Grime J.P., Hodgson J., Lauenroth W.K., Thompson K., Vandermeer J.H. and Wardle D.A., 2000. No consistent effect of plant diversity on productivity. Science 289: 1255. [Google Scholar]
  • Isbell F.I., Polley H.W. and Wilsey, B.J., 2009. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01299.x. [Google Scholar]
  • Lamb D., Erskine P.D. and Parotta J., 2005. Restoration of degraded tropical forest landscapes. Science 310: 1628–1632 [CrossRef] [PubMed] [Google Scholar]
  • Loreau M. and Hector A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76 [CrossRef] [PubMed] [Google Scholar]
  • Loreau M., Naeem S., Inchausti P., Bengtsson J., Grime J.P., 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808 [CrossRef] [PubMed] [Google Scholar]
  • Mason N.W.H., MacGillivray K., Steel J.B. and Wilson J.B., 2003. An index of functional diversity. J. Veg. Sci. 14: 571–578 [CrossRef] [Google Scholar]
  • Moles A.T., Ackerly D.D., Webb C.O., Tweddle J.C., Dickie J.B. and Westoby M., 2005. A brief history of seed size. Science 307: 576–580 [CrossRef] [PubMed] [Google Scholar]
  • Naeem S. and Wright J.P., 2003. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol. Lett. 6: 567–579 [CrossRef] [Google Scholar]
  • Parotta J.A. and Knowles O.H., 1999. Restoration of tropical moist forest on bauxite-mined lands in the Brazilian Amazon. Restor. Ecol. 7: 103–116 [CrossRef] [Google Scholar]
  • Pavoine S., Ollier S. and Dufour A.-B., 2005. Is the originality of a species measurable? Ecol. Lett. 8: 579–586 [Google Scholar]
  • Petchey O.L. and Gaston K.J., 2006. Functional diversity: back to basics and looking forward. Ecol. Lett. 9: 741–758 [CrossRef] [PubMed] [Google Scholar]
  • Petchey O.L., Hector A. and Gaston K.J., 2004. How do different measures of functional diversity perform? Ecology 85: 847–857 [CrossRef] [Google Scholar]
  • Phillips O.L., Malhi Y., Higuchi N., Laurance W.F., Núñez P.V., Vásquez R.M., Laurance S.G., Ferreira L.V., Stern M., Brown S. and Grace J., 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282: 439–442 [CrossRef] [PubMed] [Google Scholar]
  • Polley H.W., Wilsey B.J. and Derner J.D., 2007. Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos 116: 2044–2052 [CrossRef] [Google Scholar]
  • Rao C.R., 1982. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21: 24–43 [CrossRef] [Google Scholar]
  • Reich P., Tilman D., Naeem S., Ellsworth D., Knops J., 2004. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc. Natl. Acad. Sci. USA 101: 10101–10106 [CrossRef] [Google Scholar]
  • Ricotta C., 2005. A note on functional diversity measures. Basic Appl. Ecol. 6: 479–486 [CrossRef] [Google Scholar]
  • Roggy J.C., Prévost M.F., Gourbière F., Casabianca H. and Garbaye J., 1999. Leaf natural 15N abundance and total N concentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana. Oecologia 120: 171–182 [CrossRef] [PubMed] [Google Scholar]
  • Roscher C., Schumacher J., Baade J., Wilcke W., Gleixner G., 2004. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5: 107–121 [CrossRef] [Google Scholar]
  • Scherer-Lorenzen M., Potvin C., Koricheva J., Schmid B., Hecto, A., Bornik Z., Reynolds G. and Schulze E.-D., 2005. The design of experimental tree plantations for functional biodiversity research. In: Scherer-Lorenzen M., Korner C, and Schulze E.-D. (Eds.), Forest Diversity and Function: Temperate and Boreal Systems, Springer-Verlag, Berlin, pp. 347–376. [Google Scholar]
  • Schimann H., Ponton S., Hattenschwiler S., Ferry B., Lensi R., Domenach A.M. and Roggy J.C., 2008. Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: Evidence from 15N natural abundance and microbial activities. Soil Biol. Biochem. 40: 487–494 [Google Scholar]
  • Schwartz M.W., Brigha, C.A., Hoeksema J.D., Lyons K.G., Mills M.H. and van Mantgem P.J., 2000. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122: 297–305 [CrossRef] [PubMed] [Google Scholar]
  • Simpson E.H., 1949. Measurement of diversity. Nature 163: 688. [CrossRef] [Google Scholar]
  • Tilman D., Reich P.B., Knops J., Wedin D., Mielke T. and Lehman C., 2001. Diversity and productivity in a long-term grassland experiment. Science 294: 843–845 [CrossRef] [PubMed] [Google Scholar]
  • Wojciechowski M.F., Lavin M. and Sanderson M.J., 2005. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am. J. Bot. 91: 1846–1862 [CrossRef] [Google Scholar]
  • Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., 2004. The worldwide leaf economics spectrum. Nature 428: 821–827 [CrossRef] [PubMed] [Google Scholar]
  • Wright J.P., Naeem S., Hector A., Lehma, C., Reich P.B., Schmid B. and Tilman D., 2006. Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol. Lett. 9: 111–120 [CrossRef] [PubMed] [Google Scholar]
  • Zhang Q.G. and Zhang D.Y., 2007. Colonization sequence influences selection and complementarity effects on biomass production in experimental algal microcosms. Oikos 116: 1748–1758 [CrossRef] [Google Scholar]