Free Access
Ann. For. Sci.
Volume 67, Number 3, May 2010
Article Number 302
Number of page(s) 16
Section Original articles
Published online 18 February 2010
  • Bi H., 2000. Trigonometric variable-form taper equations for Australian eucalyptus. For. Sci. 46: 397–409 [Google Scholar]
  • Briggs R.D., Lemin R.C. and Lemin R.C., Jr., 1992. Delineation of climatic regions in Maine. Can. J. For. Res. 22: 801–811 [CrossRef] [Google Scholar]
  • Burkhart H.E. and Walton S.B., 1985. Incorporating crown ratio into taper equations for loblolly pine trees. For. Sci. 31: 478–484 [Google Scholar]
  • Chi E.M. and Reinsel G.C., 1989. Models for longitudinal data with random effects and AR(1) errors. J. Amer. Statistical Assoc. 84: 452–460 [CrossRef] [Google Scholar]
  • Clark III A.C., Souter R.A. and Schlaegel B.E., 1991. Stem profile equations for southern tree species. USDA For. Serv. South. Res. Pap. SE-282. Asheville, NC. 113 p. [Google Scholar]
  • Clutter J.L., Fortson J.C., Pienaar L.V., Brister G.H. and Bailey R.L., 1983. Timber Management, John Wiley & Sons. [Google Scholar]
  • Corral-Rivas J.J., Diéguez-Aranda U., Rivas S.C. and Dorado F.C., 2007. A merchantable volume system for major pine species in El Salto, Durango (Mexico). For. Ecol. Manage. 238: 118–129 [CrossRef] [Google Scholar]
  • Diéguez-Aranda U., Castedo-Dorado F., Álvarez-González J.G. and Rojo A., 2006. Compatible taper function for plantations in northwestern Spain. Can. J. For. Res. 36: 1190-1205 [CrossRef] [Google Scholar]
  • Davidian M. and Giltinan D.M., 1995. Nonlinear models for repeated measurement data. Chapman & Hall. [Google Scholar]
  • Fang Z., Borders B.E. and Bailey R.L., 2000. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For. Sci. 46: 1–12 [Google Scholar]
  • Farrar R.M. and Murphy P.A., 1987. Taper functions for predicting product volumes in natural shortleaf pine. US For. Serv. Res. Pap. SO-234, Asheville, NC, 9 p. [Google Scholar]
  • Filho A.F. and Schaaf L.B., 1999. Comparison between predicted volumes estimated by taper equations and true volumes obtained by the water displacement technique (xylometer). Can. J. For. Res. 29: 451–461 [CrossRef] [Google Scholar]
  • Garber S.M. and Maguire D.A., 2003. Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures. For. Ecol. Manage. 179: 507–522 [CrossRef] [Google Scholar]
  • Gilmore D.W. and Seymour R.S., 1996. Alternative measures of stem growth efficiency applied to Abies balsamea from four canopy positions in central Maine. For. Ecol. Manage. 84: 209–218 [CrossRef] [Google Scholar]
  • Gregoire T.G., Schabenberger O. and Barrett J.P., 1995. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can. J. For. Res. 25: 137–156 [CrossRef] [Google Scholar]
  • Hibbs D.E., Bluhm A.R. and Garber S.M., 2007. Stem taper and volume of managed red alder. West. J. Appl. For. 22: 61–66 [Google Scholar]
  • Honer T.G., 1965. A new total cubic foot volume function. For. Chron. 41: 476–493 [Google Scholar]
  • Jiang L., Brooks J.R. and Hobbs G.R., 2007. Using crown ratio in yellow-poplar compatible taper and volume equations. North. J. Appl. For. 24: 271–275 [Google Scholar]
  • Kozak A., 1988. A variable-exponent taper equation. Can. J. For. Res. 18: 1363–1368 [CrossRef] [Google Scholar]
  • Kozak A., 1998. Effects of upper stem measurements on the predictive ability of a variable-exponent taper equation. Can. J. For. Res. 28: 1078–1083 [CrossRef] [Google Scholar]
  • Kozak A., 2004. My last words on taper equations. For. Chron. 80: 507–514 [Google Scholar]
  • Kozak A. and Smith J.H.G., 1993. Standards for evaluating taper estimating systems. For. Chron. 69: 438–444 [Google Scholar]
  • Kozak A., Munro D.D. and Smith J.H.G., 1969. Taper functions and their application in forest inventory. For. Chron. 45: 278–283 [Google Scholar]
  • Lappi J., 2006. A multivariate, nonparametric stem-curve prediction method. Can. J. For. Res. 36: 1017–1027 [CrossRef] [Google Scholar]
  • Larson B.C., 1963. Stem form development of forest trees. For. Sci. Monogr. 5: 1–42 [Google Scholar]
  • Leites L.P. and Robinson A.P., 2004. Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework. For. Sci. 50: 204–212 [Google Scholar]
  • Maguire D.A., Brissette J. and Gu L., 1998. Crown structure and growth efficiency of red spruce in uneven-aged, mixed species stands in Maine. Can. J. For. Res. 28: 1233–1240 [CrossRef] [Google Scholar]
  • Maguire D.A. and Batista J.L.F., 1996. Sapwood taper models and implied sapwood volume and foliage profiles for coastal Douglas-fir. Can. J. For. Res. 26: 849–863 [CrossRef] [Google Scholar]
  • Max T.A. and Burkhart H.E., 1976. Segmented polynomial regression applied to taper equations. For. Sci. 22: 283–289 [Google Scholar]
  • McWilliams W.H., Butler B.J., Caldwell L.E., Griffith D.M., Hoppus M.L., Laustsen K.M., Lister A.J., Lister T.W., Metzler J.W., Morin R.S., Sader S.A., Stewart L.B., Steinman J.R., Westfall J.A., Williams D.A., Whitman A. and Woodall C.W., 2005. The forests of Maine: 2003. Resource Bulletin NE-164. US Department of Agriculture, Forest Service, Northeastern Research Station, Newton Square, PA, 188 p. [Google Scholar]
  • Meyer S.R., 2005. Leaf area as a growth predictor of Abies balsamea and Picea rubens in managed stands in Maine. Master’s thesis, University of Maine, Orono, 117 p. [Google Scholar]
  • Muhairwe C.K, LeMay V.M. and Kozak A., 1994. Effects of adding tree, stand, and site variables to Kozak’s variable-exponent taper equation. Can. J. For. Res. 24: 252–259 [CrossRef] [Google Scholar]
  • Ozcelik R., 2008. Comparison of formulae for estimating tree bole volumes of Pinus sylvestris. Scand J. For Res. 23: 412–418 [CrossRef] [Google Scholar]
  • Pace M.D., 2003. Effect of stand density on behavior of leaf area prediction models for eastern white pine (Pinus strobus L.) in Maine. Master’s thesis, University of Maine, Orono, 69 p. [Google Scholar]
  • Phillips L.M., 2002. Crop tree growth and quality twenty-five years after precommercial thinning in a northern conifer stand. Master’s thesis, University of Maine, Orono, 88 p. [Google Scholar]
  • Pinherio J.C. and Bates D.M., 2000. Mixed-effects models in S and S-Plus. Springer-Verlag, New York, NY. [Google Scholar]
  • Pitt D. and Lanteigne L., 2008. Long-term outcome of precommercial thinning in northwestern new Brunswick: growth and yield of balsam fir and red spruce. Can. J. For. Res. 38: 592–610 [CrossRef] [Google Scholar]
  • Rojo A., Perales X., Sanchez-Rodriguez F., Alvarez-Gonzalez J.G. and von Gadow K., 2005. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (northwestern Spain). Eur. J. For. Res. 25: 177–186 [CrossRef] [Google Scholar]
  • Sharma M. and Parton J., 2009. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis. For. Sci. 55: 268–282 [Google Scholar]
  • Sharma M. and Zhang S.Y., 2004. Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. Can. J. For. Res. 198: 39–53 [Google Scholar]
  • Shaw D.J., Meldahl R.S., Kush J.S. and Somers G.L., 2003. A tree taper model based on similar triangles and use of crown ratio as a measure of form in taper equations for longleaf pine. Tech. Rep., US Forest Service Southern Research Station General Technical Report SRS-66, Asheville, NC, 8 p. [Google Scholar]
  • Thomas C.E. and Parresol B.R., 1991. Simple, flexible trigonometric taper equations. Can. J. For. Res. 21: 1132–1137 [CrossRef] [Google Scholar]
  • Trincado G. and Burkhart H.E., 2006. A generalized approach for modeling and localizing stem profile curves. For. Res. 52: 670–682 [Google Scholar]
  • Valenti M.A. and Cao Q.V., 1986. Use of crown ratio to improve loblolly pine taper functions. Can. J. For. Res. 16: 1141–1145 [CrossRef] [Google Scholar]
  • Valentine H.T. and Gregoire T.G., 2001. A switching model of bole taper. Can. J. For. Res. 31: 1400–1409 [CrossRef] [Google Scholar]
  • Vicary B.P., Brann T.B. and Griffin R.H., 1984. Polymorphic site index curves for even-aged spruce-fir stands in Maine. Maine Agricultural Experiment Station Bulletin 802. University of Maine, Orono, 33 p. [Google Scholar]
  • Walters D.K. and Hann D.W., 1986. Taper equations for six conifer species in southwest Oregon. Research Bulletin 56, Forest Research Laboratory, Oregon State University, Corvallis, OR. 36 p. [Google Scholar]
  • Weiskittel A.R., Kenefic L.S, Seymour R.S and Phillips L., 2009, Long-term effects of precommercial thinning on the stem dimensions form, volume, and branch characteristics of red spruce and balsam fir crop trees in Maine, USA. Silva Fenn. 43: 397–409. [Google Scholar]
  • Zakrzewski W.T., 1999. A mathematically tractable stem profile model for jack pine in Ontario. North. J. Appl. For. 16: 138–143 [Google Scholar]
  • Zhang Y., Borders B.E. and Bailey R.L., 2002. Derivation, fitting, and implication of a compatible stem taper-volume-weight system for intensively managed, fast growing loblolly pine. For. Sci. 48: 595–607 [Google Scholar]